Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 1 Toán 11 năm 2022 - 2023 trường THPT Gia Định - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán 11 năm học 2022 – 2023 trường THPT Gia Định, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 90 phút, không kể thời gian phát đề; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề cuối kì 1 Toán 11 năm 2022 – 2023 trường THPT Gia Định – TP HCM : + Cho đa giác đều n đỉnh n N n 4. Tìm n biết đa giác đã cho có 135 đường chéo. + Cho hình chóp S.ABCD có đáy ABCD là hình thang,đáy lớn AB 2CD. Gọi M, N lần lượt là trung điểm của AD, BC và K là điểm thuộc đoạn SB sao cho SK 3KB. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Tìm giao điểm H của SA với mp(MNK). c) Tìm thiết diện của mp(MNK) với hình chóp S.ABCD. d) Chứng minh: KN song song mp(SMD). + Một lớp học có 40 học sinh, trong đó gồm 15 nam và 25 nữ trong đó có Châu và Ngọc. Giáo viên chủ nhiệm chọn ngẫu nhiên một Ban cán sự lớp gồm 5 em. Tính xác suất của các biến cố sau: a) A: Chọn được Ban cán sự lớp chỉ có 2 nữ. b) B: Chọn được Ban cán sự lớp có nhiều nhất 2 nam. c) C: Chọn được Ban cán sự lớp mà trong đó Châu và Ngọc không đồng thời được chọn.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Quỳnh Lưu 1 - Nghệ An
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Quỳnh Lưu 1 – Nghệ An gồm 6 bài toán tự luận. Trích một số câu trong đề thi: 1. Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phận kiểm nghiệm 6 hộp sữa cam và 5 hộp sữa dâu. Bộ phận kiểm nghiệm chọn 4 hộp sữa để phân tích mẫu. a) Tính xác suất để 4 hộp sữa được chọn cùng một loại. b) Tính xác suất để 4 hộp sữa được chọn có ít nhất 1 hộp sữa dâu. 2. Tìm số hạng đầu và công sai của cấp số cộng có số hạng thứ 8 bằng 15 và tổng của của 9 số hạng đầu tiên là 81.
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Nguyễn Hiền - Đà Nẵng
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Nguyễn Hiền – Đà Nẵng gồm 12 câu hỏi trắc nghiệm khách quan và 2 bài toán tự luận. Trích một số câu trong đề thi: 1. Một tổ có 5 học sinh trong đó có bạn An. Có bao nhiêu cách xếp 5 bạn đó thành một hàng dọc sao cho bạn An luôn đứng đầu? A.120 cách xếp B. 5 cách xếp C. 24 cách xếp D. 25 cách xếp 2. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hai đường thẳng không cùng thuộc một mặt phẳng thì chéo nhau. B. Hai đường thẳng thuộc hai mặt phẳng khác nhau thì chéo nhau. C. Hai đường thẳng không song song thì chéo nhau. D. Hai đường thẳng không có điểm nào chung thì chéo nhau. 3. Câu lạc bộ toán học của Nhà trường có 15 học sinh nam trong đó có An và 10 học sinh nữ đều có khả năng học tốt môn toán như nhau. Chọn ngẫu nhiên từ đó 5 bạn để tham gia “Diễn đàn toán học Thành phố”. Tính xác suất của biến cố: “trong 5 bạn được chọn phải có An và có ít nhất 3 bạn nữ”.
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Hồng Đức - Đăk Lăk
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Hồng Đức – Đăk Lăk gồm 50 câu hỏi trắc nghiệm khách quan. Trích một số câu trong đề thi: 1. Phương trình cos2x = 1/2 có số nghiệm thuộc khoảng (0;π) là? 2. Có 2 hộp bút chì màu. Hộp thứ nhất có có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là: 3. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;6); B(-1; -4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5) Tìm khẳng định đúng trong các khẳng định sau: A. ABCD là hình thang B. ABCD là hình bình hành C. ABDC là hình bình hành D. Bốn điểm A, B, C, D thẳng hàng
Đề thi HK1 Toán 11 cơ bản năm học 2016 - 2017 trường Vinh Lộc - TT Huế
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường Vinh Lộc – Thừa Thiên Huế gồm 4 mã đề, mỗi đề gồm 40 câu hỏi trắc nghiệm và 2 câu hỏi tự luận. Đề thi dành cho học sinh theo chương trình chuẩn. Trích một số câu trong đề thi: 1. Trong bài thi vấn đáp, giáo viên soạn sẵn 10 câu hỏi trong đó có 7 câu hỏi mức độ dễ và 3 câu hỏi mức độ khó. Xác suất một học sinh chọn ngẫu nhiên 3 câu hỏi mà có ít nhất một câu hỏi khó bằng? 2. Cho tứ diện ABCD sao cho BCD và ACD là các tam giác cân lần lượt tại B và A; AB = AC = CD = a. M là một điểm trên cạnh AC với AM = x (0 < x < a). (α ) là mặt phẳng qua M song song với AB và CD. Mặt phẳng (α ) cắt tứ diện ABCD theo thiết diện là hình chữ nhật MNPQ (N, P, Q lần lượt nằm trên các cạnh BC, BD, AD). Giá trị của x theo a để diện tích thiết diện MNPQ lớn nhất là: 3. Giải phương trình: sin2x – cos2x = 3sinx + cosx − 2