Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 7 lần 2 năm 2023 - 2024 cụm CM số 6 Nga Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi giao lưu học sinh giỏi môn Toán 7 lần 2 năm học 2023 – 2024 cụm chuyên môn số 6 huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 lần 2 năm 2023 – 2024 cụm CM số 6 Nga Sơn – Thanh Hóa : + Bác An chia một khu đất thành 3 mảnh hình chữ nhật có diện tích bằng nhau cho ba người con trai. Biết rằng chiều rộng của các mảnh đất lần lượt là 6m, 8m, 10m. Tổng chiều dài các mảnh đất là 47m. Tính diện tích khu đất đó. + Cho tam giác ABC nhọn, kẻ BE vuông góc với AC tại E (E thuộc AC), kẻ CF vuông góc với AB tại F (F thuộc AB). Gọi M là trung điểm của BC. Trên tia đối của tia MF lấy điểm D sao cho MF MD. a) Chứng minh CD BF và CD BF. b) Lấy điểm P bất kì nằm giữa B và F trên tia đối của tia MP lấy điểm Q sao cho MP MQ. Chứng minh DQC thẳng hàng. c) Trên tia đối của tia EF lấy điểm K trên tia đối của tia FE lấy điểm I sao cho EK FI. Chứng minh tam giác MIK cân. + Cho ba số chính phương x, y, z. Chứng minh rằng A = (x – y)(y – z)(z – x) chia hết cho 12.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 02 năm 2023. Trích dẫn đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Số A được chia thành ba phần tỉ lệ theo. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 viết được dưới dạng hiệu của hai số chính phương. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE.
Đề HSG cấp cụm Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2023. Trích dẫn Đề HSG cấp cụm Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b – 5| + b – 5. + Tìm các giá trị nguyên của x để biểu thức C 22 3x 4 x có giá trị lớn nhất. + Cho ∆ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. a) Chứng minh rằng: MC = BN. b) Chứng minh rằng: BN ⊥ CM. c) Kẻ AH ⊥ BC (H ∈ BC). Chứng minh AH đi qua trung điểm của MN.
Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Số A được chia thành 3 số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. + Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n N) đều là các số chính phương thì n chia hết cho 40.
Đề Olympic Toán 7 đợt 1 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 7 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5 : 6 : 7 nhưng sau đó chia theo tỉ lệ 4 : 5 : 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho ∆ABC có AB AC vẽ đường phân giác AD. Trên cạnh AC lấy điểm E sao cho AE AB. a) Chứng minh: BD DE. b) Gọi K là giao điểm của AB và ED. Chứng minh rằng: DBK DEC. c) ∆ABC cần có thêm điều kiện gì để D cách đều ba cạnh của ∆AKC. + Ông Nam gửi ngân hàng 100 triệu, lãi suất 8%/năm. Hỏi sau 36 tháng số tiền cả gốc và lãi thu được là bao nhiêu? (Biết nếu tiền lãi không rút ra thì tiền lãi đó sẽ nhập vào vốn để tính lãi cho các kì hạn tiếp theo).