Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng

Tài liệu gồm 07 trang, được biên soạn bởi Ths. Hoàng Minh Quân (giáo viên Toán trường THPT chuyên Nguyễn Huệ, Hà Nội), bàn về một cách tiếp cận khác cho bài toán tính góc giữa đường thẳng và mặt phẳng. Trong chương trình toán THPT, các bài toán về góc giữa đường thẳng và mặt phẳng tuy không mới. Song, nó vẫn mang tính thời sự trong các bài kiểm tra định kì, các kì thi học sinh giỏi, kì thi tốt nghiệp Trung học Phổ thông hằng năm. Bài viết sau đây khai thác một hướng tiếp cận khác cho bài toán tính góc giữa đường thẳng với mặt phẳng. 1. Kiến thức cơ bản 1.1. Định nghĩa: Cho đường thẳng a và mặt phẳng (a). Góc giữa đường thẳng a và hình chiếu a’ của nó trên mặt phẳng (a) được gọi là góc giữa đường thẳng a và mặt phẳng (a). 1.2. Các xác định góc giữa đường thẳng a và mặt phẳng (a). Cách 1: + Bước 1. Tìm O = a giao (a). + Bước 2. Lấy A thuộc a và dựng AH vuông góc (a) tại H . Khi đó (a;(a)) = (a;a’) = AOH. + Bước 3. Tính số đo của góc AOH. Chú ý: 0 =< (a;(a)) =< 90. Cách 2: Tính gián tiếp theo một trong hai hướng sau: + Hướng 1: Chọn một đường thẳng d // a mà góc giữa d và (a) có thể tính được. Từ đó ta có: (a;(a)) = (d;(a)). + Hướng 2: Chọn một mặt phẳng (b) // (a) mà góc giữa a và (b) có thể tính được. Từ đó ta có: (a;(a)) = (a;(b)). Tuy nhiên việc xác định hình chiếu của một điểm lên mặt phẳng không phải lúc nào cũng thuận lợi. Chính vì vậy, việc đưa ra một cách tiếp cận khác là sử dụng khoảng cách để tính góc giữa đường thẳng với mặt phẳng nhằm khắc phục khó khăn đó. 1.3. Định hướng tiếp cận: Cho đường thẳng a và mặt phẳng (a). Để tính góc x giữa đường thẳng a và mặt phẳng (a), ta tiếp cận thông qua ý tưởng đơn giản khác như sau: + Bước 1: Tìm O = a giao (a). + Bước 2: Tính sinx = d(A;(a))/OA. Cách tiếp cận này thích hợp cho học sinh nắm chắc việc tính khoảng cách từ một điểm đến một mặt phẳng. Sau đây chúng tôi đưa ra một số ví dụ minh hoạ với lời giải theo hướng tiếp cận sử dụng khoảng cách để tính góc giữa đường thẳng với mặt phẳng. 2. Ví dụ minh họa 2.1. Áp dụng cho các bài toán khối chóp. 2.2. Áp dụng cho các bài toán khối lăng trụ. 2.3. Bài tập tự luyện.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập các bài toán hình học không gian - Châu Ngọc Hùng
Tuyển tập các bài toán hình học không gian được phân dạng theo khối hình, tài liệu gồm 75 trang do thầy Châu Ngọc Hùng biên soạn. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi; hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (S AC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (S AB) bằng a = √3/4, tính thể tích khối chóp S.ABCD theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng S A và mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD, biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho lăng trụ tam giác ABC.A1B1C1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt đáy bằng 30 độ. Hình chiếu vuông góc H của đỉnh A trên mặt phẳng (A1B1C1) thuộc đường thẳng B1C1. Tính thể tích khối lăng trụ ABC.A1B1C1 và tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a.
Chuyên đề hình học không gian 2016 - Trần Quốc Nghĩa
Tài liệu chuyên đề hình học không gian 2016 do thầy Trần Quốc Nghĩa biên soạn gồm 2 phần: Phần 1: Tổng hợp các kiến thức hình học không gian, bao gồm: Các phương pháp chứng minh cơ bản trong hình học không gian 1. Chứng minh đường thẳng d song song mp(α) (d ⊄ (α)) 2. Chứng minh mp(α) song song với mp(β) 3. Chứng minh hai đường thẳng song song 4. Chứng minh đường thẳng d vuông góc với mặt phẳng (α) 5. Chứng minh hai đường thẳng d và d’ vuông góc 6. Chứng minh hai mặt phẳng (α) và (β) vuông góc [ads] Các công thức tính thường được sử dụng Cách vẽ và xác định các yếu tố góc, khoảng cách trong các khối đa diện thường gặp 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy 3. Hình chóp tứ giác đều S.ABCD 4. Hình chóp S.ABC, SA vuông góc với đáy 5. Hình chóp tam giác đều S.ABC 6. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) 7. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông 8. Hình lăng trụ 9. Mặt cầu ngoại tiếp hình chóp Phần 2: Tổng hợp 150 bài toán hình học không gian trong các đề thi thử 2016.
Các phương pháp tính thể tích khối đa diện
Tài liệu gồm 34 trang hướng dẫn các phương pháp tính thể tích khối đa diện và các bài tập vận dụng. §1.ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG ĐL1:Nếu đường thẳng d không nằm trên mp (P) và song song với đường thẳng a nằm trên mp (P) thì đường thẳng d song song với mp(P) ĐL2: Nếu đường thẳng a song song với mp (P) thì mọi mp (Q) chứa a mà cắt mp (P) thì cắt theo giao tuyến song song với a ĐL3: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó §2.HAI MẶT PHẲNG SONG SONG ĐL1: Nếu mp (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau ĐL2: Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia ĐL3: Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song [ads] §1.ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG ĐL1: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp (P) thì đường thẳng d vuông góc với mp (P) ĐL2: (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp (P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P) §2.HAI MẶT PHẲNG VUÔNG GÓC ĐL1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau ĐL2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q) ĐL3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P) ĐL4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba
Hình học không gian - Đặng Thành Nam
Tài liệu gồm 36 trang trình bày phương pháp giải các dạng toán hình học không gian và các ví dụ minh họa có lời giải chi tiết. Các nội dung chính trong tài liệu : Các yếu tố trong tam giác cần nắm vững Các công thức tính thể tích Phương pháp xác định chiều cao của khối chóp + Loại 1: Khối chóp có một cạnh vuông góc với đáy đó chính là chiều cao của khối chóp. + Loại 2: Khối chóp có một mặt bên vuông góc với đáy thì đường cao chính là đường kẻ từ đỉnh khối chóp đến giao tuyến của mặt bên đó với đáy khối chóp. + Loại 3: Khối chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì đường cao chính là giao tuyến của hai mặt bên đó. + Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh khối chóp đến tâm vòng tròn ngoại tiếp đáy + Loại 5: Khối chóp có các mặt bên cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh đến tâm vòng tròn nội tiếp đáy. + Loại 6: Khối chóp có hai mặt bên cùng tạo với đáy một góc bằng nhau thì chân đường cao khối chóp hạ từ đỉnh sẽ nằm trên đường phân giác của góc tạo bởi hai cạnh nằm trên mặt đáy của hai mặt bên. Chẳng hạn khối chóp S.ABCD có hai mặt bên (SAC) và (SAB) cùng tạo với đáy góc a khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường phân giác của góc BAC. + Loại 7: Khối chóp có hai cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì chân đường cao hạ từ đỉnh khối chóp nằm trên đường trung trực nối giữa hai giao điểm của hai cạnh bên với đáy. Chẳng hạn khối chóp S.ABCD có cạnh SB, SD khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường trung trực của BD. Việc xác định chân đường cao của khối chóp giúp ta giải quyết bài toán [ads] + Tính thể tích khối chóp. + Tính góc tạo bởi đường thẳng hoặc mặt phẳng bên với đáy hoặc tính góc giữa hai mặt bên khối chóp(góc tạo bởi cạnh bên và mặt đáy chính là góc tạo bởi cạnh bên và đường thẳng nối chân đường cao khối chóp và giao điểm của cạnh bên với đáy). + Tính khoảng cách từ một điểm tới một mặt phẳng. Phương pháp tính thể tích khối đa diện + Khi xác định được chiều cao khối chóp thì áp dụng cách tính trực tiếp thể tích khối chóp. + Phân chia khối đa diện thành nhiều khối đa diện hơn và dễ tính thể tích hơn. + Dùng tỷ số thể tích. Khoảng cách từ một điểm đến một mặt phẳng Tìm tâm và bán kính mặt cầu ngoại tiếp khối đa diện Ví dụ minh họa có lời giải chi tiết Bài tập áp dụng tự luyện