Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian

Tài liệu gồm 86 trang được biên soạn bởi thầy Nguyễn Văn Vinh và thầy Lê Đình Hùng (OMEGA Groups) hướng dẫn giải các dạng toán thường gặp trong chuyên đề phương pháp tọa độ trong không gian (Hình học 12 chương 3). BÀI 1 : HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Hiểu rõ lý thuyết, nắm vững các công thức trong tọa độ không gian cùng với các trường hợp vận dụng của từng công thức. BÀI 2 : PHƯƠNG TRÌNH MẶT PHẲNG. Các dạng toán trong bài này thường yêu cầu viết phương trình mặt phẳng, do vậy ta cần nắm vững các bài toán viết phương trình mặt phẳng kèm theo các điều kiện sau: + Mặt phẳng (α) qua M và song song với (β). + Mặt phẳng (α) đi qua ba điểm A, B, C. + Mặt phẳng (α) đi qua M và vuông góc với đường thẳng d. + Mặt phẳng (α) chứa đường thẳng d và vuông góc với (β). + Mặt phẳng (α) chứa đường thẳng d và song song với đường thẳng d’ (d và d’ chéo nhau). + Mặt phẳng (α) đi qua M và chứa đường thẳng d. + Mặt phẳng (α) chứa 2 đường thẳng cắt nhau d và d’. + Mặt phẳng (α) chứa 2 đường thẳng song song d và d’. + Mặt phẳng (α) là mặt phẳng trung trực của đoạn AB. + Mặt phẳng (α) vuông góc với 2 mặt phẳng (β) và (P) ((β) và (P) cắt nhau). + Mặt phẳng (α) chứa 2 điểm M, N và tạo với (β) 1 góc là φ. [ads] BÀI 3 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN. Nắm vững lý thuyết về tính tương đối giữa đường với đường và đường với mặt kèm theo các phương pháp xác định. Thuộc các công thức tính khoảng cách và góc. Các bài tập trong bài này thường yêu cầu viết phương trình đường thẳng, tìm giao điểm hoặc hình chiếu … ta cần nắm vững các dạng toán viết phương trình đường thẳng sau: + Đường thẳng đi qua 2 điểm. + Đường thẳng đi qua 1 điểm và vuông góc với mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và song song với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 2 đường thẳng cho trước. + Đường thẳng vuông góc và cắt đường thẳng d’ và song song với 1 mặt phẳng cho trước. + Đường thẳng đi qua 1 điểm và vuông góc với 1 đường thẳng cho trước. + Đường thẳng đi qua 1 điểm, cắt đường thẳng a và vuông góc với đường thẳng b. + Đường thẳng đi qua 1 điểm và cắt 2 đường thẳng cho trước. + Đường thẳng vuông góc với mặt phẳng (α) và cắt 2 đường thẳng a và b. + Đường thẳng là hình chiếu của d’ lên mặt phẳng (α). + Đường thẳng d qua M (d và M cùng nằm trong (α) và vuông góc với đường thẳng a (a không thuộc (α)). + Đường thẳng là đường vuông góc chung của 2 đường a và a’ cho trước. BÀI 4 : PHƯƠNG TRÌNH MẶT CẦU. Nắm rõ vị trí tương đối giữa mặt cầu với mặt phẳng và mặt cầu với đường thẳng kèm theo các điều kiện xác định. Các bài tập trong bài này đa số yêu cầu viết phương trình mặt cầu, ta cần nắm vững các bài toán viết phương trình mặt cầu sau: + Mặt cầu có tâm I và đi qua điểm A. + Mặt cầu nhận AB làm đường kính. + Mặt cầu đi qua 3 điểm A, B, C và có tâm I(a;b;c) thuộc mặt phẳng (α). + Mặt cầu ngoại tiếp tứ diện ABCD. + Mặt cầu có tâm I và tiếp xúc với mặt phẳng (α). + Mặt cầu có tâm I và cắt mặt phẳng (α) theo giao tuyến là đường tròn có bán kính r. + Mặt cầu có tâm I và tiếp xúc với đường thẳng a. + Mặt cầu có tâm I và tiếp xúc ngoài mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I tiếp xúc trong với mặt cầu có tâm I’, bán kính R’. + Mặt cầu có tâm I cắt đường thẳng a tại A và B, sao cho AB = m. BÀI 5 : CÁC BÀI TOÁN CỰC TRỊ TRONG TỌA ĐỘ KHÔNG GIAN. Ngoài các bài toán thường gặp như viết phương trình mặt phẳng, đường thẳng, mặt cầu, xác định giao điểm, hình chiếu, vị trí tương đối … chuyên đề này còn xuất hiện các bài toán khó liên quan đến chủ đề cực trị. Kể từ khi chuyển hình thức thi toán sang trắc nghiệm, bài toán cực trị xuất hiện ngày càng nhiều và thường có mặt trong các đề thi tuyển sinh nhằm tăng thêm tính phân loại, chọn lọc học sinh khá giỏi cho các trường, các ngành ở tốp cao. Do vậy, đây là dạng toán quan trọng mà các bạn học sinh muốn vô các ngành có điểm cao cần phải nắm được. + Cho các điểm A, B, C … Tìm điểm H thuộc mặt phẳng (α) hoặc đường thẳng d sao cho nó thỏa mãn điều kiện để các biểu thức sau có giá trị lớn nhất hoặc nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc mặt phẳng (α) sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B không thuộc d, tìm điểm M thuộc d sao cho MA + MB đạt giá trị nhỏ nhất. + Cho 2 điểm A và B, viết phương trình mặt phẳng (α) qua B sao cho (α) cách A một khoảng lớn nhất. + Cho điểm A và đường thẳng d không đi qua A, viết phương trình mặt phẳng (α) qua d sao cho (α) cách A một khoảng lớn nhất. + Cho mặt phẳng (α) và điểm B thuộc (α), viết phương trình đường thẳng a chứa trong (α), đi qua B và cách điểm A không thuộc (α) một khoảng lớn nhất và nhỏ nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng d không song song hoặc nằm trên (α), viết phương trình đường thẳng a chứa trong (α) đi qua A và cách d một khoảng lớn nhất. + Cho hai đường thẳng a và b không song song nhau, viết phương trình mặt phẳng (α) chứa a và tạo với b một góc lớn nhất. + Cho điểm A thuộc mặt phẳng (α) và đường thẳng a không song song hoặc nằm trong (α), viết phương trình đường thẳng b chứa trong (α) và qua A sao cho tạo với a một góc lớn nhất và nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương trình mặt phẳng
Tài liệu gồm 29 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mặt phẳng, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm được cách xác định mặt phẳng, vectơ pháp tuyến của mặt phẳng. + Nắm được công thức tính khoảng cách từ điểm đến mặt phẳng, góc giữa hai mặt phẳng. + Nhận biết được vị trí tương đối giữa đường thẳng với mặt phẳng, giữa mặt phẳng với mặt cầu. Kĩ năng : + Viết được phương trình tổng quát của mặt phẳng. + Xác định được vectơ pháp tuyến trong các trường hợp. + Tính được khoảng cách và góc. + Xác định được vị trí tương đối và vận dụng vào giải bài tập. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. – Bài toán 1. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một vectơ pháp tuyến. – Bài toán 2. Viết phương trình mặt phẳng biết một điểm thuộc mặt phẳng và tìm được một cặp vectơ chỉ phương. – Bài toán 3. Lập phương trình mặt phẳng liên quan đến khoảng cách. – Bài toán 4. Viết phương trình mặt phẳng liên quan đến mặt cầu. – Bài toán 5. Phương trình mặt phẳng đoạn chắn. Dạng 2 : Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. – Bài toán 1. Vị trí tương đối giữa hai mặt phẳng. – Bài toán 2. Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 3 : Khoảng cách từ một điểm đến mặt phẳng. Dạng 4 : Góc giữa hai mặt phẳng. Dạng 5 : Một số bài toán cực trị.
Bài giảng hệ tọa độ trong không gian
Tài liệu gồm 17 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hệ tọa độ trong không gian, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz. Mục tiêu : Kiến thức : + Nắm vững định nghĩa hệ trục tọa độ Oxyz trong không gian, các khái niệm về tọa độ điểm, tọa độ vectơ. + Nắm vững biểu thức tọa độ các phép toán vectơ và các tính chất. + Nắm vững biểu thức tọa độ của tích vô hướng, tích có hướng của hai vectơ và các ứng dụng. + Nắm vững được phương trình mặt cầu, điều kiện để một phương trình là phương trình mặt cầu. Kĩ năng : + Biết tìm tọa độ của một điểm, một vectơ. Tính được tổng, hiệu các vectơ, tích của vectơ với một số. + Tính được tích vô hướng của hai vectơ và các ứng dụng: tính độ dài vectơ, tính khoảng cách giữa hai điểm, tính góc giữa hai vectơ. + Xác định được tích có hướng của hai vectơ và vận dụng làm được một số bài toán. + Viết phương trình mặt cầu biết tâm và bán kính. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Sử dụng các định nghĩa và khái niệm có liên quan đến điểm, vectơ: Tọa độ của điểm, vectơ; độ dài vectơ … và các phép toán vectơ … để tính tổng, hiệu các vectơ; tìm tọa độ trọng tâm tam giác. Dạng 2 : Tích có hướng và ứng dụng. – Bài toán 1. Tìm vectơ tích có hướng. + Để tính tích có hướng của hai vectơ, ta áp dụng công thức. – Bài toán 2. Ứng dụng của tích có hướng để chứng minh tính đồng phẳng. + Ba vectơ a b c đồng phẳng. + Bốn điểm A, B, C, D tạo thành tứ diện. – Bài toán 3. Ứng dụng của tích có hướng để tính diện tích và thể tích. + Diện tích hình bình hành. + Tính diện tích tam giác. + Tính thể tích hình hộp. + Tính thể tích tứ diện. Dạng 3 : Phương trình mặt cầu. Mặt cầu tâm I(a;b;c) và bán kính R có phương trình: (x – a)2 + (y – b)2 + (z – c)2 = R2.
Bài toán tương giao trong không gian Oxyz
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Lê Thảo (THPT Nguyễn Thị Minh Khai, thành phố Hà Nội) và thầy giáo Bùi Sỹ Khanh (THPT Trần Cao Vân, thành phố Hồ Chí Minh), hướng dẫn phương pháp giải bài toán tương giao trong không gian Oxyz – một dạng toán vận dụng – vận dụng cao (VD – VDC) thường xuất hiện trong các đề thi thử tốt nghiệp THPT môn Toán. I. NHẮC LẠI LÝ THUYẾT 1. Tương giao giữa mặt cầu và mặt phẳng. Trong không gian Oxyz, cho mặt phẳng P By C D Ax z 0 và mặt cầu 2 2 2 2 S x a y b z c R có tâm I a b c và bán kính R khi đó: – Nếu d I P R thì mặt cầu S và P không có điểm chung. – Nếu d I P R thì mặt cầu S và P có điểm chung duy nhất là H (mặt phẳng tiếp xúc với mặt cầu tại H) và IH P. – Nếu d I P R thì mặt cầu S và cắt mặt phẳng P theo giao tuyến là đường tròn tâm H bán kính r ta có: + Gọi H là hình chiếu vuông góc của I lên P và 2 2 2 I P r IH R d IH. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r nhỏ nhất IM P. + Cho điểm M nằm trong mặt cầu S mặt phẳng P đi qua M cắt S theo giao tuyến là đường tròn có bán kính r lớn nhất P đi qua 2 điểm I và M. 2. Tương giao giữa mặt cầu và đường thẳng. Trong không gian Oxyz, đường thẳng và mặt cầu S có tâm I và bán kính R khi đó: – Nếu d I R thì mặt cầu S và không có điểm chung. – Nếu d I R thì mặt cầu S và có điểm chung duy nhất là H khi đó IH. – Nếu d I R thì mặt cầu S và cắt đường thẳng tại hai điểm A B ta có một số kết quả sau: + Gọi H là trung điểm AB IH và 2 2 2 4 I I AB d R d IH. + Cho điểm M khi đó đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB lớn nhất là đường thẳng đi qua 2 điểm M và I. + Cho điểm M nằm trong mặt cầu S đường thẳng đi qua M cắt S tại hai điểm A B sao cho độ dài AB nhỏ nhất là đường thẳng đi qua M và vuông góc IM. II. MỘT SỐ VÍ DỤ MINH HỌA III. BÀI TẬP RÈN LUYỆN
Chuyên đề hình học tọa độ trong không gian Oxyz
Tài liệu gồm 405 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0, tổng hợp lý thuyết, phân dạng toán và bài tập trắc nghiệm chuyên đề hình học tọa độ trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh tham khảo khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ không gian) và ôn thi tốt nghiệp THPT môn Toán. Kho bài tập được nhóm tác giả sưu tầm và biên soạn khá phong phú và đa dạng, với những dạng toán hay và khó, đòi hỏi học sinh phải vận động khả năng tư duy của bản thân để xử lý những câu 8+, giúp học sinh đạt điểm cao trong kì thi sắp tới. Những câu hỏi trong cuốn sách được nhóm tác giả sưu tầm, tham khảo và phát triển từ các đề thi thử của các Sở, trường Chuyên trên cả nước. CHỦ ĐỀ 1 : HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1. Điểm và vectơ trong hệ tọa độ Oxyz. Dạng 2. Tích vô hướng và ứng dụng. Dạng 3. Phương trình mặt cầu. Dạng 4. Cực trị. CHỦ ĐỀ 2 : PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1. Xác định vectơ pháp tuyến, tính tích có hướng của mặt phẳng. Dạng 2. Viết phương trình mặt phẳng. Dạng 3. Tìm tọa độ điểm liên quan đến mặt phẳng. Dạng 4. Góc và khoảng cách liên quan đến mặt phẳng. Dạng 5. Vị trí tương đối giữa hai mặt phẳng, giữa mặt cầu và mặt phẳng. Dạng 6. Cực trị liên quan đến mặt phẳng. CHỦ ĐỀ 3 : PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1. Xác định vectơ chỉ phương của đường thẳng. Dạng 2. Viết phương trình đường thẳng. Dạng 3. Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 4. Góc và khoảng cách liên quan đến đường thẳng. Dạng 5. Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. Dạng 6. Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Dạng 7. Cực trị liên quan đến đường thẳng. CHỦ ĐỀ 4 : ỨNG DỤNG CỦA PHƯƠNG PHÁP TỌA ĐỘ. Dạng 1. Tọa độ hóa Hình học không gian. Dạng 2. Bài toán đại số. CHỦ ĐỀ 5 : TỔNG HỢP VỀ HÌNH TỌA ĐỘ OXYZ. Đề bài. Đáp án.