Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Warning: unlink(thuvien/qrcode/1756465524-QR-68b18974aaa310.png): No such file or directory in /home/admin/domains/thuviennhatruong.edu.vn/public_html/framework/main_thuvien.php on line 298

Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 - 2020 trường THCS Phú Đô - Hà Nội

Thứ Sáu ngày 19 tháng 06 năm 2020, trường THCS Phú Đô, quận Nam Từ Liêm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần thứ ba giai đoạn học kỳ 2 năm học 2019 – 2020. Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người đi từ A đến B với một vận tốc dự định và thời gian dự định. Nếu người đó đi nhanh hơn mỗi giờ 10km thì đến B sớm hơn dự định 36 phút. Nếu người đó đi chậm hơn mỗi giờ 10km thì đến B muộn hơn dự định 54 phút. Hỏi quãng đường AB dài bao nhiêu km? + Cho parabol (P) y = x^2 và đường thẳng (d): y = 2(m – 2)x – 4m + 13. a) Với m = 4, vẽ (P) và (d) trên cùng một mặt phẳng tọa độ. Tìm tọa độ giao điểm? b) Tìm giá trị của m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho biểu thức S = x1^2 + x2^2 + 4x1x2 + 2020 đạt giá trị nhỏ nhất. [ads] + Cho đường tròn (O) và dây BC khác đường kính. Lấy điểm A thuộc cung BC lớn sao cho AB > AC (A khác C). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại M. a) Chứng minh tứ giác BFEC là tứ giác nội tiếp. b) Chứng minh EB là tia phân giác của góc DEF. c) Gọi I là trung điểm BC. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác MED. d) Qua D kẻ đường thẳng song song với EF cắt các đường thẳng AB, AC lần lượt tại P và N. Chứng minh khi A di động trên cung BC lớn (nhưng vẫn thỏa mãn giả thiết ban đầu) thì đường tròn ngoại tiếp tam giác MNP luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024.
Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chuyên) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Tìm các số tự nhiên n sao cho 3n + n2 + 3 là bình phương của một số tự nhiên. + Cho tam giác ABC có BC là cạnh nhỏ nhất. Trên cạnh AC, AB lấy các điểm E, F sao cho EBC = FCB = BAC. Tiếp tuyến tại E và F của đường tròn (J) ngoại tiếp tam giác AEF giao nhau tại Q. BE giao CF tại K. a) Chứng minh rằng E, F, Q, K cùng thuộc một đường tròn. b) Chứng minh rằng JB = JC. c) QK giao AB, AC lần lượt tại T, S. Chứng minh rằng QT = KS. + Cho n là số nguyên dương. Ban đầu, trên một bảng trắng có viết đúng (n + 1)2 số nguyên dương phân biệt là các ước của 10n. Mỗi bước ta chọn 2 số a, b phân biệt bất kỳ trên bảng, sau đó xóa 2 số này và viết thêm 2 số (bằng nhau) có giá trị là ước chung lớn nhất của a và b. Tiếp tục thực hiện như vậy cho đến khi tất cả các số trên bảng bằng nhau. Tìm giá trị nhỏ nhất của các bước thực hiện có thể có.
Đề kiểm tra Toán 9 (chung) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chung) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chung) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Chứng minh rằng không tồn tại các số nguyên x, y thỏa mãn: 7×2 – 30xy + 7y2 = 4(x + y) + 932024. + Với các số thực dương a và b thỏa mãn a + b = 2, tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC nội tiếp (O), ngoại tiếp (I). (I) tiếp xúc với AC, AB lần lượt tại B, F. P là điểm bất kì nằm trên (I) và không nằm trong tam giác AEF. (J), (K) lần lượt là đường tròn ngoại tiếp tam giác BPF, CPE. (J) giao (K) tại M khác P. a) Chứng minh rằng EPF = 90° – 1/2.BAC. b) Chứng minh rằng B, C, I, M cùng thuộc một đường tròn. c) Gọi L là điểm chính giữa cung BC không chứa A của (O). Chứng minh rằng L, I, J, K cùng thuộc một đường tròn.
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 trường THCS Lê Quý Đôn, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 trường THCS Lê Quý Đôn – Hà Nội : + Một đội sản xuất phải làm 200 sản phẩm trong một thời gian qui định. Trong 4 ngày đầu họ đã thực hiện theo đúng kế hoạch, những ngày còn lại họ đã làm vượt mức mỗi ngày 10 sản phẩm nên đã hoàn thành công việc sớm hơn 2 ngày. Hỏi theo kế hoạch mỗi ngày đội phải làm bao nhiêu sản phẩm? + Một máy bay cất cánh theo phương có góc nghiêng so với mặt đất là 18°. Hỏi muốn đạt độ cao 3000m máy bay phải bay đoạn đường là bao nhiêu mét? (Kết quả làm tròn đến m). + Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2) Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3) Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.