Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021-2022 sở GD ĐT Thái Nguyên Đề tuyển sinh môn Toán năm 2021-2022 sở GD ĐT Thái Nguyên Chào các thầy cô giáo và các em học sinh, Sytu xin giới thiệu đến đề tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Thái Nguyên. Đề thi bao gồm câu hỏi và đáp án cũng như lời giải chi tiết. Phần trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021-2022 sở GD&ĐT Thái Nguyên bao gồm các câu hỏi sau: 1. Cho tam giác ABC vuông tại A, đường cao AH. Biết BC=10cm và 3 sin A = 5. Hãy tính độ dài các đoạn AB, AC và AH. 2. Trong mặt phẳng tọa độ Oxy, cho điểm M(1;2). Xác định vị trí tương đối của đường tròn (M;1) và các trục toạ độ. 3. Một nhóm học sinh dự định làm 360 chiếc mũ chắn giọt bắn. Họ làm vượt mức 12 chiếc mũ mỗi ngày và hoàn thành trước thời gian dự định 2 ngày, làm thêm được 4 chiếc mũ. Hỏi theo dự định, mỗi ngày nhóm học sinh cần làm bao nhiêu chiếc mũ? File WORD (dành cho quý thầy, cô): [insert link here]

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đăk Lăk gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tính chiều dài và chiều rộng của một hình chữ nhật. Biết rằng nếu tăng cả chiều dài và chiều rộng lên 4cm thì ta được một hình chữ nhật có diện tích tăng thêm 80cm2 so với diện tích của hình chữ nhật ban đầu, còn nếu tăng chiều dài lên 5cm và giảm chiều rộng xuống 2cm thì ta được một hình chữ nhật có diện tích bằng diện tích của hình chữ nhật ban đầu. + Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K [ads] 1) Chứng minh rằng tứ giác OMHQ nội tiếp 2) Chứng minh rằng góc OMH = góc OIP 3) Chứng minh rằng khi điểm M di chuyển trên đường thẳng d thì điểm I luôn cố định 4) Biết OH = R. căn (2), tính IP.IQ
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (vòng 2)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Người ta muốn kẻ số đường chéo của đa giác mà các đường chéo này chia đa giác đã cho thành đúng k miền, mỗi miền là một ngũ giác lồi (hai miền bất kỳ không có điểm trong chung) a. Chứng minh rằng ta có thể thực hiện được với n=2018, k=672 b. Với n=2017, k=672 ta có thể thực hiện được không? Hãy giải thích [ads] + Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức: p(p – 1) = q(q^2 – 1) (*) a) Chứng minh rằng tồn tại số nguyên dương K sao cho: p – 1 = kq; q^2 – 1= kp b) Tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức (*)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID a) Chứng minh rằng góc CBK = góc ABI b) Chứng minh rằng KC vuông góc với KB c) Chứng minh rằng bốn điểm C, K, I, L cùng nằm trên một đường tròn [ads] + Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 … n thành a1, a2, a3 … an mà khi chia các số a1, a1a2, a1a2a3 … a1a2…an cho n ta được các số dư đôi một khác nhau.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Dương
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Dương gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF ,M là điểm di động trên đoạn CE [ads] a. Tính số đo góc BIF b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM=AB thì tứ giác ABHI là tứ giác nội tiếp c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất