Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán bất phương trình mũ và bất phương trình logarit thường gặp

Tài liệu gồm 50 trang được biên soạn bởi thầy Nguyễn Bảo Vương tuyển chọn 104 câu hỏi và bài toán trắc nghiệm chủ đề bất phương trình mũ và bất phương trình logarit thường gặp trong các đề thi Trung học Phổ thông Quốc gia môn Toán, các câu hỏi và bài tập đều có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán bất phương trình mũ và bất phương trình logarit thường gặp: PHẦN A . CÂU HỎI Dạng 1 . Bất phương trình logarit. Dạng 1.1 Bất phương trình cơ bản (Trang 1). Dạng 1.1.1 Không cần biến đổi (Trang 1). Dạng 1.1.2 Cần biến đổi (Trang 4). Dạng 1.2 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 6). Dạng 2 . Bất phương trình mũ. Dạng 2.1 Bất phương trình cơ bản (Trang 7). Dạng 2.1.1 Không cần biến đổi (Trang 7). Dạng 2.1.2 Cần biến đổi (Trang 10). Dạng 2.3 Giải và biện luận một số bất phương trình khó và khác (Trang 11). Dạng 2.3.1 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 11). Dạng 2.3.2 Giải bất phương trình khi biết đồ thị của f’(x) (Trang 11). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Bất phương trình logarit. Dạng 1.1 Bất phương trình cơ bản (Trang 14). Dạng 1.1.1 Không cần biến đổi (Trang 14). Dạng 1.1.2 Cần biến đổi (Trang 20). Dạng 1.2 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 24). Dạng 2 . Bất phương trình mũ. Dạng 2.1 Bất phương trình cơ bản (Trang 34). Dạng 2.1.1 Không cần biến đổi (Trang 34). Dạng 2.1.2 Cần biến đổi (Trang 39). Dạng 2.3 Giải và biện luận một số bất phương trình khó và khác (Trang 41). Dạng 2.3.1 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 41). Dạng 2.3.2 Giải bất phương trình khi biết đồ thị của f’(x) (Trang 46).

Nguồn: toanmath.com

Đọc Sách

Phương trình Mũ và Logarit - Đặng Thành Nam
Phương trình Mũ và Logarit – Đặng Thành Nam.
Chuyên đề hàm số Mũ và Logarit - Bùi Quỹ
Chuyên đề hàm số Mũ và Logarit – Bùi Quỹ
Hàm số lũy thừa - mũ và logarit -Trần Sĩ Tùng
Hàm số lũy thừa – mũ và logarit -Trần Sĩ Tùng
Một số bài toán phương trình logarit khác cơ số - Huỳnh Đức Khánh - Đại học Quy Nhơn
Phương trình logarit với cơ số khác nhau luôn là vấn đề gây khó dễ cho học sinh khi gặp phải trong các đề thi. Học sinh thường lúng túng khi biến đổi, gặp khó khăn để đưa về cùng cơ số hoặc đưa về các phương trình cơ bản. Tôi viết tài liệu xin đóng góp vài bài mẫu về vấn đề này, bao gồm các phương pháp: + Đổi cơ số + Đặt ẩn phụ để đưa về phương trình mũ + Biến đổi tương đương + Đánh giá hai vế