Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa

Nội dung Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa Bản PDF - Nội dung bài viết Chia sẻ Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa Chia sẻ Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa Chào đón các thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin được giới thiệu đến các bạn đề thi khảo sát chất lượng môn Toán lớp 9, ôn thi tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 tại trường THPT Đào Duy Anh, Thanh Hóa. Đề thi này sẽ diễn ra vào ngày 19 tháng 03 năm 2023. Dưới đây là một số câu hỏi trong Đề KSCL Toán vào 10 lần 1 năm 2023 – 2024 trường THPT Đào Duy Anh – Thanh Hóa: 1. Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng (d): y = -x + n – 1 và (d'): y = (m2 − 3)x + m. Tìm m và n để (d) vuông góc với (d'), đồng thời (d) cắt (d') tại điểm A(3;1). 2. Cho phương trình x^2 − 2(m + 1)x + m^2 + 1 = 0 với m là tham số. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 (x1 < x2) thoả mãn (2x2 − 3)2 – (2x1 − 3)2 = 32m – 16. 3. Cho đường tròn (O;R), đường kính AB cố định, điểm I nằm giữa O và A sao cho AI = 1/3.AO. Kẻ dây cung MN vuông góc với AB tại I, gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E. a. Chứng minh tứ giác EIBC nội tiếp. b. Chứng minh AM^2 = AE.AC. c. Tìm bán kính đường tròn ngoại tiếp tam giác MCE khi NK nhỏ nhất, với K là tâm đường tròn ngoại tiếp tam giác MCE. Hy vọng rằng việc ôn tập và giải các bài tập từ Đề KSCL Toán vào 10 lần 1 năm 2023 – 2024 sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 (lần 1) năm 2021 - 2022 trường THCS Chu Văn An - Hà Nội
Đề khảo sát Toán 9 (lần 1) năm 2021 – 2022 trường THCS Chu Văn An – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2021. Trích dẫn đề khảo sát Toán 9 (lần 1) năm 2021 – 2022 trường THCS Chu Văn An – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một phân xưởng ký hợp đồng dệt một số khăn mặt trong 20 ngày. Do cải tiến kĩ thuật, mỗi ngày phân xưởng đã sản xuất được nhiều hơn 30 chiếc khăn so với hợp đồng, vì thế phân xưởng đã dệt xong số khăn ký hợp đồng trong 18 ngày và còn dệt thêm được 24 chiếc. Tính số khăn mà phân xưởng phải dệt theo hợp đồng? + Từ nhà bạn Ly đến trường cách 500m. Nhưng hôm nay khi đi đến ngã ba thì đường đang sửa chữa nên Ly phải đi sang nhà bạn An rồi từ nhà An (cách trường 400m) mới tới trường. Tính quãng đường đến trường hôm nay của Ly, biết rằng con đường từ nhà Ly đến nhà An và con đường từ nhà An đến trường vuông góc với nhau. + Cho tam giác ABC vuông tại A, AH là đường cao, cho AB = 9cm, BH = 5cm. a. Tính độ dài đoạn thẳng AH, AC, BC (kết quả làm tròn đến chữ số thập phân thứ nhất ). b. Hai điểm E, D lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AE.AB = AD.AC. c. Chứng minh.
Đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng – Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 02 tháng 10 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 tháng 9 năm 2021 trường THCS Tô Hoàng – Hà Nội : + Cho hàm số y m xm 1 2 (với tham số m ≠ −1) có đồ thị là đường thẳng (d). 1. Tìm m để đồ thị hàm số đi qua điểm M 2. Khi m = 1 a. Vẽ đường thẳng (d) trên hệ trục tọa độ Oxy b. Tìm tọa độ giao điểm của đường thẳng (d) với đường thẳng (d1): y = 3x + 1. + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ một con sông, người ta đặt máy đo ở vị trí C sao cho AC AB. Biết AC = 20m và 750. Tính khoảng cách AB (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH H BC. a) Cho biết AB = 3cm; BC = 5cm. Tính độ dài các đoạn AC, HA và số đo góc HAC (góc làm tròn đến độ). b) Qua B kẻ đường thẳng vuông góc với BC, cắt tia CA tại D. Kẻ AE vuông góc với BD tại E. Chứng minh: 2 DE DB DA và 2 DE DB CH CB AD AC CD. c) Lấy I đối xứng với D qua B. Kẻ IK ⊥ CD tại K. Chứng minh.
Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có lời giải chi tiết; kỳ thi được diễn ra vào ngày 16 tháng 09 năm 2021. Trích dẫn  đề khảo sát Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Biểu thức sau đây xác định với giá trị nào của x (học sinh chỉ ghi đáp số). + Cho hai biểu thức P x x và x x 1 1 Q x xx với x > 0. a) Tính giá trị của biểu thức P khi x = 3. b) Chứng minh rằng 1 1 x Q x. c) So sánh Q với 1. d) Biết P S Q. Tìm giá trị nhỏ nhất của biểu thức S. e) Tìm giá trị của x thỏa mãn Sx x x 4 6 3. + Thực hiện phép tính.
Đề kiểm tra Toán 9 năm 2020 - 2021 trường THCS Tam Khương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra Toán 9 năm học 2020 – 2021 trường THCS Tam Khương – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021. Trích dẫn đề kiểm tra Toán 9 năm 2020 – 2021 trường THCS Tam Khương – Hà Nội : + Một hộp sữa hình trụ có đường kính đáy là 12 cm, chiều cao là 10 cm. Người ta dùng giấy làm tem mác dán xung quanh vỏ hộp sữa. Tính diện tích giấy làm tem mác cần dùng để làm 1 lốc sữa (6 hộp) như vậy (không tính phần mép nối, lấy pi = 3,14). + Cho hàm số y m x m 4 4 (m là tham số). a) Tìm m để hàm số đã cho là hàm số bậc nhất đồng biến trên R. b) Chứng minh rằng với mọi giá trị của m thì đồ thị hàm số đã cho luôn cắt parabol 2 P y x tại hai điểm phân biệt. Gọi 1 2 x x là hoành độ các giao điểm, tìm m sao cho x x x x 1 1 2 2 1 1 18. + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a) Chứng minh tứ giác BEGH là tứ giác nội tiếp. b) Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c) Đoạn thẳng AK cắt đường tròn tại F khác A. Chứng minh G là tâm đường tròn nội tiếp HEF.