Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan

Tài liệu gồm 91 trang được sưu tầm và tổng hợp bởi tác giả Trịnh Bình, phân dạng và hướng dẫn giải các dạng toán chủ đề rút gọn biểu thức chứa căn và các bài toán liên quan, đây là dạng toán được bắt gặp thường xuyên trong chương trình Toán 9 và trong đề thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan: Vấn đề 1 . Các công thức biến đổi căn thức. Vấn đề 2 . Cách tìm điều kiện trong bài toán chứa căn thức. Vấn đề 3 . Các dạng toán biến đổi căn thức thường gặp. Vấn đề 4 . Dùng ẩn phụ để đơn giải hóa bài toán. Vấn đề 5 . Các bài toán về tính tổng dãy có quy luật. Vấn đề 6 . Rút gọn biểu thức chưa một hay nhiều ẩn. [ads] Vấn đề 7 . Rút gọn biểu thức và bài toán liên quan. + Dạng toán 1: Tính giá trị biểu thức khi x = k (với k là hằng số). + Dạng toán 2: Tính giá trị biến x để P = k (với k là hằng số). + Dạng toán 3: Tính giá trị biến x để P = A (với A là biểu thức chứa ẩn). + Dạng toán 4: Tìm giá trị của biến x để biểu thức P đã cho thỏa mãn bất đẳng thức P < k (>, ≥, ≤) với k là hằng số. + Dạng toán 5: So sánh biểu thức đã cho với k (hằng số) hoặc B (biểu thức chứa ẩn). + Dạng toán 6: So sánh biểu thức rút gọn A với √A hoặc A^2. + Dạng toán 7: Chứng minh với mọi giá trị của ẩn x để biểu thức A đã cho xác định thì A > k (<, ≥, ≤) với k là hằng số. + Dạng toán 8: Tìm giá trị của biến x để biểu thức P đã cho thỏa mãn bất đẳng thức P < A (>, ≥, ≤) với A là biểu thức chứa ẩn. + Dạng toán 9: Tìm giá trị của ẩn để biểu thức đã cho nhận giá trị nguyên. + Dạng toán 10: Tìm giá trị của ẩn để biểu thức đạt GTNN hoặc GTLN. + Dạng toán 11: Chứng minh biểu thức đã cho luôn âm hoặc luôn dương. + Dạng toán 12: Tìm giá trị của ẩn thỏa mãn phương trình, bất phương trình chứa dấu giá trị tuyệt đối. + Dạng toán 13: Tìm giá trị tham số m để x thỏa mãn phương trình, bất phương trình. Bài tập luyện tập và hướng dẫn giải bài tập.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 21 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và góc trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Giải tam giác vuông. Cách giải: Để giải tam giác vuông ta dùng hệ thức giữa cạnh và các góc trong tam giác vuông. – Chú ý: Các bài toán về giải tam giác vuông bao gồm: + Giải tam giác vuông khi biết độ dài 1 cạnh và số đo 1 góc nhọn. + Giải tam giác vuông khi biết độ dài 2 cạnh. Dạng 2 : Tính cạnh và góc của tam giác. Cách giải: Làm xuất hiện tam giác vuông để áp dụng các hệ thức trên bằng cách kẻ thêm đường cao. Dạng 3 : Toán ứng dụng thực tế. Cách giải: Dùng hệ thức giữa cạnh và góc trong tam giác vuông để giải quyết tình huống trong thực tế. Dạng 4 : Toán tổng hợp. Cách giải: Vận dụng linh hoạt một số hệ thức giữa cạnh và góc trong một tam giác vuông để giải toán. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề tỉ số lượng giác của góc nhọn
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề tỉ số lượng giác của góc nhọn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa. 2. Tỉ số lượng giác của hai góc phụ nhau. 3. Một số hệ thức liên hệ giữa các tỉ số lượng giác. 4. Bảng tỷ số lượng giác của một số góc đặc biệt. B. Bài tập và các dạng toán. Dạng toán: Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. Cách giải: Sử dụng các kiến thức trong phần tóm tắt lý thuyết. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. B. Bài tập và các dạng toán. Dạng 1: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng các phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.