Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 2021 sở GD ĐT Cần Thơ

Nội dung Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 2021 sở GD ĐT Cần Thơ Bản PDF Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi THPT cấp thành phố môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ được biên soạn theo hình thức đề thi tự luận 100%, đề gồm 01 trang với 07 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ : + Tại một buổi liên hoan tri ân khách hàng của một công ty, Ban tổ chức phát hành 900 tấm vé trúng thưởng, mỗi tấm vé được ghi một số nguyên, liên tiếp từ 100 đến 999. Khách đến tham dự, chọn ngẫu nhiên các tấm vé này. Nếu chọn được tấm vé có ghi số lẻ và chia hết cho 9 thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1500 đồng. Nếu chọn được tấm vé có ghi các số còn lại thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1000 đồng. Hỏi tổng số tiền Ban tổ chức dùng để trao thưởng cho khách hàng là bao nhiêu? + Cô An dự định xây một cái bể có thể tích bằng 18 m3 dùng để dự trữ nước mưa. Biết bể này không có nắp và có dạng một khối lăng trụ lục giác đều. Hỏi cô An phải thiết kế cạnh đáy của bể trên dài bao nhiêu mét để tổng diện tích phần phải xây là nhỏ nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC (không có góc tù) nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong góc A. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C, biết B(5;0), I(-1/2;1), E(-1;0) và A có tung độ âm.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Quảng Bình
Ngày 08 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Quảng Bình : + Cho tứ diện ABCD và hai điểm M, N lần lượt thuộc các cạnh AB, AC sao cho 2AM = BM, 2CN = AN. Mặt phẳng (P) đi qua hai điểm M, N và song song với cạnh AD, cắt các cạnh BD và CD lần lượt tại K và L. a. Gọi V là thể tích của khối tứ diện ABCD. Tính thể tích khối đa diện BCMNLK theo V. b. Giả sử tứ diện ABCD có BC = x (0 < x < √3), tất cả các cạnh còn lại đều bằng 1. Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi A, B là các giao điểm của (C) với các trục tọa độ. Tìm trên (C) các điểm M có tọa độ nguyên sao cho tam giác MAB có diện tích bằng 8 (đvdt). + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn (O), chọn ngẫu nhiên 3 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tam giác tù.
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bến Tre
Thứ Tư ngày 24 tháng 02 năm 2021, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho hàm số y = (x + 1)/(3 – x) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Tìm các số thực m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt M, N tạo thành tam giác MNI có trọng tâm nằm trên (C). + Gọi M là tập hợp các số tự nhiên gồm 5 chữ số khác nhau đôi một được lập từ tập X = {0; 1; 2; 3; 4; 5}. Lấy ngẫu nhiên 2 phần tử của M. Tính xác suất để có ít nhất một trong hai phần tử đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S. AMPN. Tìm giá trị nhỏ nhất của V1/V.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Khánh Hòa
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2020.
Đề thi chọn HSG tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Thừa Thiên Huế
Thứ Ba ngày 19 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề). Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chẵn. + Cho phương trình: (2m + 3).16^x – (4m – 2).4^x + 3m – 8 = 0 (1) với m là tham số thực. a) Giải phương trình khi m = 3. b) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm trái dấu. + Cho hình chóp S.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Gọi H là hình chiếu của S lên mặt phẳng đáy ABCD. a) Chứng minh rằng SA vuông góc với SC. b) Tính diện tích đáy ABCD theo x của hình chóp S.ABCD. c) Xác định x để khối chóp S.ABCD có thể tích lớn nhất. Tính giá trị thể tích lớn nhất đó.