Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thanh Trì Hà Nội

Nội dung Đề học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2022-2023 Đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2022-2023 Chúng ta hãy cùng tìm hiểu về đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2022-2023 do phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội tổ chức. Đề thi gồm các câu hỏi sau: 1. Cho hàm số bậc nhất y = (m - 1)x + (m + 2) (m khác 1) có đồ thị là (d). a) Vẽ đồ thị hàm số khi m = 2. b) Tìm m để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 3. c) Tìm tọa độ điểm cố định mà các đường thẳng (d) luôn đi qua. 2. Để đo chiều rộng AB của một khúc sông mà không phải băng ngang qua nó, một người đi từ A đến C đo được AC = 50m và từ C nhìn thấy B với một góc nghiêng 62° so với bờ sông. Tính chiều rộng của khúc sông. (Làm tròn đến chữ số thập phân thứ hai). 3. Cho đường tròn (O;R) và điểm A nằm ngoài (O). Kẻ tiếp tuyến AB của (O) (B là tiếp điểm). Kẻ dây BC của (O) vuông góc với OA tại H. a) Chứng minh: H là trung điểm của BC và OH.OA = R. b) Chứng minh: AC là tiếp tuyến của (O;R). c) Trên tia đối tia BC lấy điểm Q. Từ Q vẽ hai tiếp tuyến QD, QE của (O) (D, E là tiếp điểm). Chứng minh: ba điểm A, E, D thẳng hàng. Hãy chuẩn bị kỹ càng và tự tin để làm bài tốt nhé! Chúc quý thầy, cô giáo và các em học sinh thành công trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GDĐT Tân Bình - TP HCM
Ngày 13 tháng 12 năm 2019, phòng Giáo dục và Đào tạo quận Tân Bình, thành phố Hồ Chí Minh tổ chức kiểm tra chất lượng dạy và học môn Toán lớp 9 trong giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Bình – TP HCM gồm có 07 bài toán tự luận, đề thi gồm 01 trang, thời gian học sinh làm bài thi HK1 Toán 9 là 90 phút (không tính thời gian giám thị coi thi phát đề). Trích dẫn đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Bình – TP HCM : + Cho hai hàm số: y = 2x – 3 (D1) và y = -1/2x + 2 (D2). a) Vẽ (D1) và (D2) trên cùng một mặt phẳng tọa độ. b) Tìm tọa độ giao điểm A của (D1) và (D2) bằng phép toán. c) Tìm m để đường thẳng y = (m – 2)x + m + 8 có đồ thị (D3) đi qua điểm A. + Ở siêu thị có thang máy cuốn nhằm giúp khách hàng di chuyển từ tầng này của siêu thị lên tầng kế cận rất tiện lợi. Biết rằng thang cuốn này được thiết kế có độ nghiêng 36° so với phương ngang là góc BAH và tốc độ vận hành là 2m/s. Một khách hàng đã di chuyển bằng thang cuốn này từ tầng 1 lên tầng 2 của siêu thị theo hướng AB hết 8 giây. Hỏi khoảng cách giữa tầng 1 và tầng 2 của siêu thị (BH) cao bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ 2). [ads] + Tháng 11 vừa qua, có ngày Black Friday (thứ 6 đen – mua sắm siêu giảm giá). Phần lớn các trung tâm thương mại đều giảm giá rất nhiều mặt hàng. Mẹ bạn An có dẫn An đến một trung tâm thương mại để mua một bộ quần áo thể thao, Biết một bộ quần áo thể thao đang khuyến mãi giảm giá 40%, mẹ bạn An có thể khách hàng thân thiết của trung tâm thương mại nên được giảm thêm 5% trên giá đã giảm, mẹ bạn An chi phải trả 6480000 đồng cho một bộ quần áo thể thao. Hỏi giá ban đầu của một bộ quần áo thể thao nếu không khuyến mãi là bao nhiêu? + Sân trường THCS A là một hình vuông, còn sân trường THCS B là một hình chữ nhật có chiều rộng 4,5m và chiều dài 18m. Biết rằng diện tích của hai sân trường bằng nhau. Hãy tính chu vi sân trường THCS A. + Cho đường tròn (O) là đường tròn tâm O đường kính AB. Qua A vẽ tiếp tuyến Ax của (O), trên tia Ax lấy điểm M (M khác A), từ M vẽ tiếp tuyến MC của (O) (C là tiếp điểm). Gọi H là giao điểm của OM và AC. Đường thẳng MB cắt (O) tại D (D nằm giữa M và B). a) Chứng minh: OM vuông góc với AC tại H. b) Chứng minh: MD.MB = MH.MO và góc MHD = góc MBA. c) Gọi K là trung điểm đoạn thẳng BD. Tiếp tuyến tại B của (O) cắt tia OK tại E. Chứng minh: Ba điểm A, C, E thẳng hàng.
Đề thi học kì 1 Toán 9 năm 2019 - 2020 phòng GDĐT Hoàn Kiếm - Hà Nội
Ngày 12 tháng 12 năm 2019, phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kì 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Hoàn Kiếm – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài là 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kì 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Cho hàm số bậc nhất y = (m – 2)x + m + 1 với m là tham số có đồ thị là đường thẳng (d). 1. Tìm m để (d) đi qua điểm A(1;-1). Vẽ (d) với m vừa tìm được. 2. Với giá trị nào của m thì (d) và đường thẳng (d): y = 1 – 3x song song với nhau? 3. Tìm m để khoảng cách từ gốc tọa độ O đến (d) bằng 1. [ads] + Cho đường tròn (O;4cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H. 1. Chứng minh ABC vuông và tính độ dài AC. 2. Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ACBD cân và EC/DH = EA/DB. 3. Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) và từ đó suy ra ICQ = CBI. 4. Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng AB, HC, AF đồng quy. + Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GDĐT Đống Đa - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, học sinh làm bài thi trong khoảng thời gian 90 phút, kỳ thi được diễn ra vào sáng thứ Năm ngày 12 tháng 12 năm 2019. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Đống Đa – Hà Nội : + Cho hai hàm số: y = -x + 2 (d) và y = x + 4 (d’). 1) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ. 2) (d) cắt (d’) tại điểm M. Tìm tọa độ điểm M. 3) (d) cắt Ox tại A, cắt Oy tại B; (d’) cắt Ox tại C, cắt Oy tại D. Tính diện tích tam giác BCM. [ads] + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn (O;R). Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E và F là các tiếp điểm). EF cắt OM và OA lần lượt tại H và K. 1) Chứng minh rằng H là trung điểm của EF. 2) Chứng minh rằng bốn điểm O, M, A, F cùng thuộc một đường tròn. 3) Chứng minh OK.OA = R^2. 4) Xác định vị trí điểm M trên đường thẳng d để tam giác OHK có diện tích lớn nhất. + Cho hai số thực x, y thay đổi thỏa mãn điều kiện x + y ≥ 1 và x > 0. Tìm giá trị nhỏ nhất của biểu thức M = y^2 + (8x^2 + y)/4x.
Đề thi HK1 Toán 9 năm học 2019 - 2020 phòng GDĐT Long Biên - Hà Nội
Ngày 12/12/2019, phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi HK1 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Long Biên – Hà Nội gồm có 01 trang với 05 bài toán tự luận, học sinh có 90 phút để bài thi, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK1 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Long Biên – Hà Nội : + Cho hàm số y = -0,5x có đồ thị là (d1) và hàm số y = x + 2 có đồ thị là (d2). a) Vẽ đồ thị (d1) và (d2) trên cùng một mặt phẳng tọa độ Oxy. b) Xác định hệ số a, b của đường thẳng (d): y = ax + b biết rằng (d) song song với (d1) và (d) cắt (d2) tại một điểm có tung độ là -3. + Cho tam giác ABC đường cao AH biết BC = 5cm, AH = 2cm, độ lớn góc ACB = 30 độ. Tìm độ dài AB. + Cho điểm A nằm ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (O) (B và C là 2 tiếp điểm). a) Chứng minh: Bốn điểm A, B, O, C cùng thuộc một đường tròn và AO vuông góc với BC. b) Trên cung nhỏ BC của (O) lấy điểm M bất kì (M khác B, M khác C, M không thuộc AO). Tiếp tuyến tại M cắt AB, AC lần lượt tại D, E. Chứng minh: Chu vi tam giác ADE bằng 2AB. c) Đường thẳng vuông góc với AC tại D cắt AB và AC lần lượt tại P và Q. Chứng minh: 4PD.QE = PO^2. + Cầu Đông Trù bắc qua sông Đuống, nằm trên quốc lộ 5 kéo dài, nối xả Đông Hội, huyện Đông Anh ở phía Bắc Hà Nội và phường Ngọc Thụy, quận Long Biên ở phía Nam Hà Nội. Nhịp giữa dài 120m được thiết kế bằng vòm thép nhồi bê tông có hình một cung tròn. Khoảng cách điểm cao nhất của mái vòm xuống mặt sàn của cầu là 47m (được mô phỏng hình vẽ dưới). Hãy tính độ dài bán kính R của đường tròn chứa cung tròn là nhịp giữa của cầu Đông Trù? (kết quả làm tròn đến hai chữ số thập phân).