Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GDĐT Tiền Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tổng hợp đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang từ năm 2011 đến năm 2020, nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán sắp tới. Trích dẫn đề và tách chuyên đề tuyển sinh lớp 10 môn Toán sở GD&ĐT Tiền Giang: + Cho đường tròn (O;R) đường kính AB = 2R, điểm M thuộc (O) (M khác A và B). Trên tia AB lấy điểm C sao cho AC = 3R. Đường thẳng (d) vuông góc với AB tại C cắt AM tại E. 1. Chứng minh tứ giác BCEM nội tiếp. 2. Tính AM.AE theo R. 3. Lấy N thuộc (O) (N khác A, B, M), đường thẳng AN cắt CE tại F. Chứng minh MNEF nội tiếp. [ads] + (Giải bài toán sau bằng cách lập phương trình bậc hai) Quãng đường AB dài 90 km, có hai ôtô khởi hành cùng một lúc. Ôtô thứ nhất đi từ A đến B, ô-tô thứ hai đi từ B đến A. Sau 1 giờ hai xe gặp nhau và tiếp tục đi. Xe ôtô thứ hai tới A trước xe thứ nhất tới B là 27 phút. Tính vận tốc mỗi xe. + Trong mặt phẳng Oxy, cho parabol (P): y = 1/4×2 và đường thẳng (d): y = mx − m − 2. 1. Với m = 1, vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ. 2. Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A, B khi m thay đổi. 3. Xác định m để trung điểm của đoạn thẳng AB có hoành độ bằng 1.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Cần Thơ Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Cần Thơ Chào đón quý thầy cô giáo và các em học sinh! Để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021-2022, Sytu xin giới thiệu đến quý vị đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận. Đề thi bao gồm 20 câu trắc nghiệm và 4 câu tự luận, tổng cộng 10 điểm. Thời gian làm bài là 120 phút, và kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Tìm tất cả các giá trị của tham số m sao cho phương trình 2x^2 + mx + 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + x2^2 + x1 + x2 = 1. 2. Số lượng học sinh tham gia câu lạc bộ Toán học và Sáng tạo khoa học trong hai học kỳ khác nhau, biết rằng tổng số học sinh tham gia cả hai câu lạc bộ không đổi. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu? 3. Xác định các tính chất của các tứ giác và tam giác trong một hệ thống đường tròn nội tiếp để chứng minh một số quy luật và tính chất của hình học. Hãy cùng chuẩn bị tốt cho kỳ thi tuyển sinh và thử sức với đề thi môn Toán năm 2021-2022. Chúc các em học sinh thành công và giải đề thi một cách xuất sắc!
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào lớp 10 môn Toán năm học 2021 - 2022 của sở GD&ĐT Đắk Lắk được Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh. Đề thi bao gồm đáp án và lời giải chi tiết do thầy giáo Nguyễn Dương Hải - giáo viên Toán trường THCS Nguyễn Chí Thanh, Buôn Ma Thuột, Đắk Lắk trình bày. Một trong những câu hỏi trong đề tuyển sinh là: Trên nửa đường tròn O đường kính AB với AB = 2022, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kỳ trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. Hãy thực hiện các yêu cầu sau: 1) Chứng minh tứ giác BHDE là tứ giác nội tiếp. 2) Chứng minh AD*EC = CD*AC. 3) Chứng minh 2*AD*AE = BH*BA = 2022. 4) Xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất khi điểm C di chuyển trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB). Ngoài ra, đề cũng đưa ra các bài toán khác trong mặt phẳng tọa độ Oxy và Parabol như: phương trình đường thẳng đi qua điểm A(1,2) và song song với đường thẳng y = x/2 - 1, bài toán về Parabol 2y = x^2 và đường thẳng d y = mx + m^2 - 1/3. Hãy tìm giá trị nhỏ nhất của M(x1, x2) khi giao điểm của đường thẳng d và Parabol P là (x1, x2).
Đề tuyển sinh vào môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chào đón quý thầy cô và các em học sinh đến với đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đắk Lắk Chào đón quý thầy cô và các em học sinh đến với đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đắk Lắk Chúng tôi xin giới thiệu đến các bạn đề tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2021-2022 của sở GD&ĐT Đắk Lắk. Đề thi này bao gồm các câu hỏi, đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Ví dụ về một phần trong đề tuyển sinh: "Cho phương trình...". Trong đây, bạn sẽ được đặt ra những câu hỏi liên quan đến phương trình đó và cùng khám phá cách giải quyết chúng trong phần lời giải chi tiết. Chúng tôi hy vọng đề tuyển sinh này sẽ giúp các em học sinh rèn luyện kiến thức, chuẩn bị tốt nhất cho kỳ thi sắp tới. Hãy cùng Sytu trải nghiệm và khám phá thêm nhiều điều thú vị trong đề thi môn Toán (chuyên) của chúng tôi!
Đề tuyển sinh môn Toán (chuyên Tin) năm 2021 2022 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2021 2022 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2021-2022 của sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2021-2022 của sở GD ĐT Hà Nội Ngày 14 tháng 06 năm 2021, Sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Tin) cho năm học 2021-2022. Đề thi này bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Đề thi cung cấp đáp án và lời giải chi tiết do các thành viên của CLB Toán Lim: Nguyễn Khang, Nguyễn Văn Hoàng và Đoàn Phương Khang thực hiện. Cụ thể, trong đề thi có các câu hỏi như sau: Trò chơi với việc lấy kẹo giữa hai bạn An và Bình. Chứng minh tính chất của tam giác MBI. Chứng minh tính chất của điểm P, M và D. Chứng minh tính chất của đường thẳng HD và AM. Chứng minh tính chất của số nguyên n2 + 3n + 16 không chia hết cho 25. Đề thi này là cơ hội để các thí sinh thể hiện kiến thức và kỹ năng giải quyết vấn đề trong môn Toán (chuyên Tin). Hy vọng các thí sinh sẽ tự tin và giải đề thi một cách thành công.