Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 lần 2 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 05 năm 2023. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai địa điểm A và B cách nhau 36 km. Cùng lúc một người đi xe máy khởi hành từ A, một người đi xe đạp khởi hành từ B. Nếu đi ngược chiều nhau thì sau 45 phút họ gặp nhau. Nếu đi cùng chiều theo hướng từ A đến B thì sau 2 giờ họ gặp nhau tại C (B ở giữa A và C). Tính vận tốc mỗi xe? + Quả bóng tennis có đường kính 6,5cm. Tính diện tích nguyên liệu cần dùng để làm mặt xung quanh của quả bóng (làm tròn đến chữ số thập phân thứ 2, giả thiết rằng nguyên liệu làm các mối nối là không đáng kể, lấy pi ~ 3,14). + Cho tứ giác ABCD (AB > CD) nội tiếp đường tròn (O). M là điểm chính giữa cung AB (phần không chứa C và D). Hai dây MC, MD lần lượt cắt dây AB tại E và F. Các dây AD, MC kéo dài cắt nhau tại P. Các dây BC, MD kéo dài cắt nhau tại Q. 1) Chứng minh CDQP là tứ giác nội tiếp. 2) Chứng minh MC.ME = MD.MF. 3) Gọi R1, R2, R3, R4 lần lượt là bán kính đường tròn ngoại tiếp các tam giác DAF, DBF, CAE, CBE. Chứng minh PQ song song với AB và tính tỉ số.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am - Hà Nội
Đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội được biên soạn theo hình thức đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 tháng 11 năm 2020 trường THCS Thanh Am – Hà Nội : + Giải bài toán bằng cách lập phương trình: Hưởng ứng phong trào trồng cây xanh vì môi trường xanh sạch đẹp, một chi đoàn thanh niên dự định trồng 400 cây xanh trong một thời gian quy định. Mỗi ngày chi đoàn đã trồng vượt mức kế hoạch 10 cây. Do vậy chi đoàn đã hoàn thành công việc sớm hơn thời gian quy định 2 ngày. Hỏi theo kế hoạch mỗi ngày chi đoàn phải trồng bao nhiêu cây? + Người ta muốn xây dựng một cây cầu bắc qua một hồ nước hình tròn có bán kính 2 km (hình vẽ bên). Hãy tính chiều dài cây cầu để khoảng cách từ cây cầu đến khoảng tâm của hồ nước là 1732m (kết quả làm tròn đến chữ số hàng đơn vị). + Cho đường thẳng d: y = (m + 2)x + m với m khác 2. 1) Tìm m để đường thẳng d đi qua M(1;0). 2) Vẽ đồ thị hàm số d với m tìm được ở câu 1. 3) Tìm m để đường thẳng d cắt Ox, Oy tại điểm A và điểm B sao cho diện tích tam giác OAB bằng 1/2.
Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 2021 trường chuyên Hà Nội Amsterdam
Thứ Tư ngày 11 tháng 11 năm 2020, trường THPT chuyên Hà Nội – Amsterdam, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 9 năm học 2020 – 2021. Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Một chiếc thang dài 7m dựa vào bức tường thẳng đứng, tạo với mặt đất một góc 50°. Nếu đẩy chân của chiếc thang đó gần về phía tường đến khi thang tạo với mặt đất góc 65° (xem hình vẽ), hỏi đầu thang ở trên tường đã dịch chuyển lên một đoạn là bao nhiêu? (kết quả các phép tính lấy hai chữ số sau dấu phẩy). + Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR. + Cho a, b là các số thực trái dấu thỏa mãn a^2 >= ab + 2b^2. Tìm giá trị lớn nhất của biểu thức P = (a^2 + 2b^2)/ab.
Đề khảo sát tháng 92020 môn Toán 9 trường THCS Thái Thịnh - Hà Nội
Đề khảo sát Toán 9 năm học 2019 - 2020 trường THCS Ngô Gia Tự - Hà Nội
Nhằm chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán, thứ Sáu ngày 03 tháng 07 năm 2020, trường THCS Ngô Gia Tự, quận Hai Bà Trưng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán 9 năm học 2019 – 2020 trường THCS Ngô Gia Tự – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề khảo sát Toán 9 năm học 2019 – 2020 trường THCS Ngô Gia Tự – Hà Nội : + Một đội xe theo kế hoạch phải chuyển 180 tấn cát trong một thời gian quy định, mỗi ngày chuyển được khối lượng cát như nhau. Nhờ bổ sung thêm xe, thực tế mỗi ngày đội chuyển thêm được 10 tấn so với kế hoạch. Vì vậy chẳng những hoàn thành công việc sớm hơn thời gian quy định một ngày, mà còn chuyển vượt mức kế hoạch 20 tấn. Tính khối lượng cát mà đội dự định phải chuyển trong một ngày theo kế hoạch. + Từ một mảnh giấy hình vuông cạnh 4 cm, người ta gấp nó thành 4 phần đều nhau rồi dán kính lên các mặt bên của một hình lăng trụ tứ giác đều như hình vẽ (không có phần giấy nào chồng lên nhau). Tính thể tích của khối lăng trụ này. [ads] + Từ điểm M nằm ngoài đường tròn (O;R), dựng các tiếp tuyến MA, MB tới đường tròn (O) (A, B là các tiếp điểm) và dựng đường kính AC của đường tròn (O). Gọi D, I lần lượt là trung điểm của AO, MO; gọi H là giao điểm của MO với AB. Đường thẳng qua M vuông góc với MA cắt OB tại E. a) Chứng minh: Bốn điểm M, A, O, B nằm trên cùng một đường tròn. b) Chứng minh: Tam giác EMO là tam giác cân tại E và ID.IO = IE.OD. c) Gọi K là giao điểm của DE với AB. Tính giá trị của tích AH.AK theo R.