Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán 9 vòng 3 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn Đề chọn HSG Toán 9 vòng 3 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Cho đường tròn (O;R) và điểm A cố đỉnh với OA = 2R; đường kính BC quay quanh O sao cho tam giác ABC là tam giác nhọn. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là I. Các đường thẳng AB, AC cắt (O;R) lần lượt tại điểm thứ hai là D và E. Gọi K là giao điểm của DE với OA. a) Chứng minh AK.AI = AE.AC. b) Tính độ dài đoạn AK theo R. c) Chứng minh tâm đường tròn ngoại tiếp tam giác ADE luôn thuộc một đường thẳng cố định. + Cho 8 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 210. Chứng minh rằng trong đoạn thẳng đó luôn tìm được 3 đoạn thẳng để ghép thành một tam giác.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 - 2012 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 – 2012 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 11/03/2012, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đô Lương Nghệ An
Nội dung Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đô Lương Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Đô Lương Nghệ An Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Đô Lương Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Đô Lương, tỉnh Nghệ An. Đề thi bao gồm các câu hỏi sau: Câu 1: Cho T = 4n + 1 với n là số tự nhiên lẻ lớn hơn 1. Chứng minh giá trị của T là hợp số. Câu 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi N là trung điểm của BC. Từ N vẽ đường thẳng song song với AB cắt AC tại E. Từ C vẽ đường thẳng song song với AH cắt đường thẳng NE tại K. BK cắt AH tại M. a) Chứng minh BC2 = 4.NE.NK và M là trung điểm của đoạn thẳng AH b) Các đường phân giác của tam giác AHE cắt nhau tại I, các đường phân giác của tam giác CHE cắt nhau tại Q. Đường thẳng IQ cắt các đường thẳng AH và CH thứ tự tại P và F. Chứng minh AH.HC = 2.HP.HF. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng trong môn Toán. Chúc các em thành công!
Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa
Nội dung Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Chào đón quý thầy cô và các em học sinh lớp 9, đây là bộ đề thi Olympic dành cho các trường THCS nhằm chuẩn bị cho kỳ thi học sinh giỏi môn Toán lớp 9 năm học 2023-2024 tại trường THPT chuyên Lam Sơn, Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 05 tháng 11 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trong đề thi này, chúng ta sẽ gặp các bài toán đa dạng và thú vị như: Phương trình nghiệm nguyên ax by c với điều kiện số nguyên dương A. Cách chứng minh số nghiệm nguyên thỏa mãn điều kiện đã cho. Chứng minh đồng dạng của các tam giác trong hình học cơ bản thông qua giao điểm ba đường phân giác của tam giác. Chứng minh tính chất về đường tròn nội tiếp tam giác và đường thẳng đi qua tâm của đường tròn. Hy vọng rằng bộ đề thi này sẽ giúp các em ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt được kết quả cao trong kỳ thi sắp tới. Chúc các em học tốt và thành công!
Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An
Nội dung Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 vòng 3 năm học 2023-2024 của trường THCS Tân Thành, tỉnh Nghệ An. Đề thi này bao gồm các câu hỏi thú vị và thách thức, kèm theo đáp án và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. Hãy chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. Hãy chứng minh rằng BH = AC.cotABC trong tam giác ABC. Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng MP/MQ. Trong một buổi gặp mặt có 294 người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu lượt bắt tay diễn ra? Chứng minh rằng A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0. Đề thi Toán HSG lớp 9 vòng 3 năm 2023-2024 của trường THCS Tân Thành Nghệ An là cơ hội để các em thử thách bản thân, rèn luyện tư duy logic và khả năng giải quyet vấn đề. Chúc các em học sinh thành công và tự tin trước mỗi câu hỏi!