Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Cần Thơ

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Cần Thơ Bản PDF Ngày 27 tháng 02 năm 2019, sở Giáo dục và Đào tạo Cần Thơ tổ chức kỳ thi chọn học sinh giỏi khối THPT cấp thành phố lớp 12 môn Toán năm học 2018 – 2019. Đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ gồm 02 trang với 08 bài toán tự luận, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ : + Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai ngoại ngữ là tiếng Anh và tiếng Pháp. [ads] + Năm bạn học sinh Tính, Nghĩa, Tuấn, Phú và Thuận ở chung một phòng trong ký túc xá của một trường trung học phô thông. Một hôm, người quản lý ký túc xá đến phòng của năm học sinh này để xác định lại hộ khẩu nhà của từng học sinh. Vì đều là học sinh giỏi toán nên các học sinh không trả lời trực tiếp mà nói với người quản lý ký túc xá như sau: – Tính: “Nhà bạn Phú ở Thới Lai còn nhà em ở Cờ Đỏ”. – Nghĩa: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Tuấn ở Ô Môn”. – Tuấn: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Phú ở Thốt Nốt”. – Phú: “Nhà em ở Thới Lai còn nhà bạn Thuận ở Ninh Kiều”. – Thuận: “Nhà em ở Ninh Kiều còn nhà bạn Tính ở Thốt Nốt. Em hãy giúp người quản lý ký túc xá xác định đúng hộ khẩu nhà của các học sinh trên. Biết răng trong câu trả lời của mỗi học sinh đều có một phần đúng và một phần sai đồng thời mỗi địa phương là địa chỉ hộ khâu của đúng một học sinh. + Một nhà sản xuất sữa bột dành cho trẻ em cần thiết kế bao bì cho loại sản phẩm mới. Theo yêu cầu của lãnh đạo nhà máy, hộp sữa mới có dạng hình hộp chữ nhật với đáy là hình vuông hoặc có dạng một hình trụ. Biết rằng hộp sữa mới có thể tích bằng 1dm3. Hãy giuýp lãnh đạo nhà máy thiết kế hộp sữa này sao cho vật liệu sử dụng làm bao bì là ít nhất.

Nguồn: sytu.vn

Đọc Sách

Đề chọn ĐT thi HSG tỉnh môn Toán năm 2023 2024 chuyên Phan Bội Châu Nghệ An
Nội dung Đề chọn ĐT thi HSG tỉnh môn Toán năm 2023 2024 chuyên Phan Bội Châu Nghệ An Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề chọn ĐT thi HSG tỉnh môn Toán năm 2023 – 2024 chuyên Phan Bội Châu – Nghệ An : + Đặt ngẫu nhiên hết 9 viên bi được đánh số 1; 2; 3; 4; 5; 6; 7; 8; 9 vào 9 ô vuông của lưới ô vuông 3 x 3 (hình vẽ lưới ô vuông dưới đây) sao cho mỗi ô vuông chỉ được đặt đúng một viên bi. Tính xác suất để tổng các số trên mỗi hàng là số lẻ và tổng các số trên mỗi cột cũng là số lẻ. + Cho tứ diện ABCD cố định, P là điểm thay đổi trong tam giác BCD. Gọi M, N, E thứ tự là hình chiếu vuông góc của P lên các mặt phẳng (ACD), (ADB), (ABC). Xác định vị trí của P để thể tích tứ diện PMNE đặt giá trị lớn nhất. + Cho các số thực a b c thay đổi thỏa mãn các điều kiện a b c và 2 2 2 a b c 5. Tìm giá trị nhỏ nhất của biểu thức P a b b c c a ab bc ca.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bến Tre
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn các đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 14 tháng 09 năm 2023.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi lập đội tuyển chọn học sinh giỏi dự thi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra trong hai ngày 14/09/2023 và 15/09/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước : + Cho tam giác ABC có trực tâm H nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn đường kính AH và đường tròn (O) cắt nhau tại T khác A. AT cắt BC tại Q. NP cắt tiếp tuyến tại A của đường tròn (O) tại R. a) Chứng minh rằng QR vuông góc với OH. b) Đường thẳng đối xứng với HM qua phân giác trong góc BHC cắt đoạn thẳng BC tại I. Gọi K là hình chiếu của A trên HI. Chứng minh rằng đường tròn ngoại tiếp tam giác MIK tiếp xúc với đường tròn (O). + Trên bàn có 99 tấm thẻ được đánh số từ 1 đến 4 và từ 6 đến 100. Hai bạn A và B luân phiên chơi trò chơi với luật như sau: i) A là người thực hiện lượt chơi đầu tiên. ii) Trong mỗi lượt chơi, người chơi nhặt ra khỏi bàn 2 tấm thẻ được đánh hai số nguyên liên tiếp nhau sao cho số bé hơn không chia hết cho 10 và giữ một tấm thẻ trên tay đồng thời bỏ đi tấm thẻ còn lại. iii) Khi tới lượt chơi của mình, nếu người chơi không thể thực hiện được yêu cầu ii hoặc chọn được hai tấm thẻ nhưng tổng số của một trong hai tấm thẻ đó với một tấm thẻ tuỳ ý trên tay hai người chơi đang giữ bằng 101 thì là người thua cuộc. Biết rằng hai người chơi có thể thấy được số ghi trên tất cả các tấm thẻ trên bàn và trong tay đối thủ. Hỏi ai là người có chiến thuật thắng. + Cho đa thức bậc hai P(x) thuộc R[x] thoả mãn P(x) > 0 với mọi x ≥ 0. Chứng minh rằng tồn tại số nguyên dương m sao cho (x + 1)^m.P(x) là đa thức với hệ số không âm.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hòa Bình
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hòa Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình : + Cho dãy số (an) xác định bởi a1 = 2 và an + 1. a) Chứng minh rằng dãy số (an) là dãy số tăng. b) Với mỗi số nguyên dương n đặt bn. Chứng minh rằng dãy số (bn) có giới hạn hữu hạn và tìm giới hạn đó. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Điểm P bất kỳ nằm trong tam giác ABC sao cho AP vuông góc BC. Hạ PE vuông góc AB, PF vuông góc AC (E thuộc AB, F thuộc AC). Gọi L là giao điểm của BF và CE, Q là giao điểm của AL và BC và X là giao điểm của EF và BC. a) Chứng minh rằng đường tròn (QEF) luôn đi qua một điểm cố định. b) Kẻ đường kính AK của đường tròn (O). Chứng minh rằng KL vuông góc AX. + Cho tập hợp X = {1; 2; …; 49}. Tô màu ít nhất 24 phần tử của X với điều kiện sau: nếu a, b thuộc X (không nhất thiết phân biệt) được tô màu thì a + b cũng được tô màu, miễn là a + b thuộc X. Gọi S là tổng tất cả các phần tử không được tô màu của tập X. a) Chứng minh rằng S =< 625. b) Chỉ ra tất cả các cách tô màu sao cho S = 625.