Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Quốc gia 2016 môn Toán trường Phùng Khắc Khoan - Hà Nội

Đề thi thử Quốc gia 2016 môn Toán trường Phùng Khắc Khoan – Hà Nội có đáp án và thang điểm chi tiết.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2020 môn Toán lần 2 trường THPT Tiên Lãng - Hải Phòng
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử TN THPT 2020 môn Toán lần 2 trường THPT Tiên Lãng – Hải Phòng; đề có cấu trúc bám sát đề tham khảo tốt nghiệp THPT năm 2020 môn Toán do Bộ GD&ĐT công bố, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC). Trích dẫn đề thi thử TN THPT 2020 môn Toán lần 2 trường THPT Tiên Lãng – Hải Phòng : + Một xưởng sản xuất thực phẩm gồm 4 kỹ sư chế biến thực phẩm, 3 kỹ thuật viên và 13 công nhân. Để đảm bảo sản xuất thực phẩm chống dịch Covid-19, xưởng cần chia thành 3 ca sản xuất theo thời gian liên tiếp nhau sao cho ca 1 có 6 người và 2 ca còn lại mỗi ca có 7 người. Tính xác suất sao cho mỗi ca có 1 kĩ thuật viên, ít nhất một kĩ sư chế biến thực phẩm. + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt x là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng? [ads] + Ông An dự định gửi vào ngân hàng một số tiền với lãi suất không đổi là 7% một năm. Biết rằng cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho năm kế tiếp. Tính số tiền tối thiểu x (triệu đồng, x thuộc N) ông An gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy giá trị 45 triệu đồng.
Đề thi thử TN THPT 2020 lần 2 môn Toán trường THPT Nguyễn Văn Cừ - Hải Dương
Ngày … tháng 06 năm 2020, trường THPT Nguyễn Văn Cừ, tỉnh Hải Dương tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông (TN THPT) môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử TN THPT 2020 lần 2 môn Toán trường THPT Nguyễn Văn Cừ – Hải Dương có cấu trúc bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT, đề thi gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo Nhóm Toán VD – VDC). Trích dẫn đề thi thử TN THPT 2020 lần 2 môn Toán trường THPT Nguyễn Văn Cừ – Hải Dương : + Vi rút cúm gây ra bệnh viêm phổi cấp ngày thứ t với số lượng là F(t) con, nếu phát hiện sớm khi số lượng không vượt quá 40000 con thì bệnh nhân sẽ được cứu chữa. Biết F'(t) = 1000/(2t + 1) và ban đầu bệnh nhân có 2000. Sau 14 ngày bệnh nhân phát hiện ra bị bệnh. Hỏi khi đó có bao nhiêu con vi rút trong cơ thể (làm tròn đến hàng đơn vị) và bệnh nhân có cứu chữa được không? A. 21684 con vi rút và cứu được. B. 24999 con vi rút và cứu được. C. 47170 con vi rút và không cứu được. D. 54340 con vi rút và không cứu được. [ads] + Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 1. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AA’ và BB’. Đường thẳng CM cắt đường thẳng C’A’ tại P, đường thẳng CN cắt đường thẳng C’B’ tại Q. Thể tích khối đa diện lồi A’MPB’NQ bằng? + Trong không gian Oxyz, cho hai mặt cầu (S1), (S2) lần lượt có phương trình là x^2 + y^2 + z^2 – 2x – 2y – 2z – 22 = 0 và x^2 + y^2 + z^2 – 6x + 4y + 2z + 5 = 0. Xét các mặt phẳng (P) thay đổi nhưng luôn tiếp xúc cả hai mặt cầu đã cho. Gọi M(a;b;c) là điểm mà tất cả các mặt phẳng (P) đi qua. Tính tổng S = a + b + c.
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Lê Quý Đôn - Quảng Trị
Ngày … tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, thành phố Đông Hà, tỉnh Quảng Trị tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Lê Quý Đôn – Quảng Trị có mã đề 137, đề thi được biên soạn bám sát ma trận đề minh họa tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT chuyên Lê Quý Đôn – Quảng Trị : + Giả sử F(x) là một nguyên hàm của hàm số f(x) và G(x) là một nguyên hàm của hàm số g(x). Hỏi khẳng định nào dưới đây sai? A. kF(x) là một nguyên hàm của kf(x) (với k là một hằng số thực). B. F(x)G(x) là một nguyên hàm của f(x)g(x). C. F(x) + G(x) là một nguyên hàm của f(x) + g(x). D. F(x) – G(x) là một nguyên hàm của f(x) – g(x). [ads] + Sân vườn nhà ông An có dạng hình chữ nhật, với chiều dài và chiều rộng lần lượt là 8 mét và 6 mét. Trên đó, ông đào một cái ao nuôi cá hình bán nguyệt có bán kính bằng 2 mét (tức là lòng ao có dạng một nửa của khối trụ cắt bởi mặt phẳng qua trục, tham khảo thêm ở hình vẽ bên). Phần đất đào lên, ông san bằng trên phần vườn còn lại, và làm cho mặt nền của vườn được nâng lên 0,1 mét. Hỏi sau khi hoàn thành, ao cá có độ sâu bằng bao nhiêu? (Kết quả tính theo đơn vị mét, làm tròn đến hàng phần trăm.) + Có 3 hộp đựng bi, hộp thứ nhất đựng 10 bi xanh, hộp thứ hai đựng 5 bi xanh và 5 bi đỏ, hộp thứ ba đựng 10 bi đỏ. Người ta chọn ngẫu nhiên một hộp, sau đó bốc ngẫu nhiên 2 viên bi từ hộp đó thì được cả 2 bi màu xanh. Hỏi nếu tiếp tục bốc thêm 1 viên bi nữa ở hộp đó (hai bi đã bốc trước đó không được trả lại vào hộp) thì xác suất bốc được bi xanh bằng bao nhiêu?
Đề thi thử tốt nghiệp THPT năm 2020 môn Toán sở GDĐT tỉnh Thái Nguyên
Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT năm 2020 môn Toán sở GD&ĐT tỉnh Thái Nguyên mã đề 123 được biên soạn bám sát cấu trúc đề tham khảo THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn đề thi thử tốt nghiệp THPT năm 2020 môn Toán sở GD&ĐT tỉnh Thái Nguyên : + Có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam và 5 học sinh nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ là? + Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Tìm tất cả giá trị thực của tham số m để phương trình |f(x)| = m + 4 có 6 nghiệm phân biệt. [ads] + Cho hình trụ có bán kính r = 2 có hai mặt đáy là hình tròn (O) và (O’). Trên đường tròn (O) và (O’) lần lượt lấy các điểm A và B sao cho AB = 4. Biết góc giữa đường thẳng AB và mặt đáy bằng 30°. Diện tích xung quanh của hình trụ đã cho bằng?