Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận Hai Bà Trưng Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận Hai Bà Trưng Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội Xin chào quý thầy cô giáo và các em học sinh! Hôm nay Sytu xin giới thiệu đến các bạn đề KSCL Toán lớp 9 năm 2020 – 2021 của Phòng GD&ĐT Quận Hai Bà Trưng Hà Nội. Đề thi này có đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Đề thi được tổ chức vào ngày thứ Hai, ngày 24 tháng 5 năm 2021. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: + Cho parabol \(y = x^2\) và đường thẳng \(y = mx + 2d\) (với \(m\) là tham số). Hãy chứng minh rằng đỉnh của parabol và đường thẳng luôn cắt nhau tại hai điểm phân biệt \(A\) và \(B\) nằm ở hai phía khác của trục tung. Tìm giá trị của \(m\) sao cho diện tích tam giác \(OAB\) (với \(O\) là gốc tọa độ) bằng 3. + Cho đường tròn \((O, R)\) đường kính \(AB\). Lấy điểm \(C\) nằm trên đường tròn sao cho \(AC = R\). Điểm \(D\) nằm trên cung nhỏ \(BC\) (khác \(B\) và \(C\)). Kéo dài \(AC\) và \(BD\) cắt nhau tại \(E\); kẻ \(EH\) vuông góc với \(AB\) tại \(H\) (\(H\) nằm trên \(AB\)), \(EH\) cắt \(AD\) tại \(I\). Hãy chứng minh rằng tứ giác \(AHDE\) là tứ giác nội tiếp. Sau đó, chứng minh rằng \(CF\) song song với \(EH\) và tam giác \(BCF\) là tam giác đều. Cuối cùng, tìm vị trí của \(D\) trên cung nhỏ \(BC\) để chu vi tứ giác \(ABDC\) đạt giá trị lớn nhất. + Cho ba số thực dương \(a, b, c\) có tổng thỏa mãn \(abc = 3\). Hãy chứng minh bất đẳng thức: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{9}{a + b + c}\). Hy vọng rằng các em sẽ thấy đề thi này là một cơ hội tốt để rèn luyện và nắm vững kiến thức Toán lớp 9. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 02 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Để chuẩn bị cho công tác phòng chống dịch COVID – 19 khi học sinh quay trở lại trường học trực tiếp, nhà trường dự định mua khẩu trang và dung dịch sát khuẩn với tổng số tiền là 8 triệu đồng. Tuy nhiên, vì cửa hàng có chương trình ưu đãi dành cho trường học, giá khẩu trang giảm 10%, giá dung dịch sát khuẩn giảm 15% nên nhà trường chỉ phải trả 7 triệu đồng. Hỏi số tiền ban đầu dự định để mua khẩu trang là bao nhiêu? + Trong mặt phẳng Oxy, cho đường thẳng (d): y m 1 x 2m m 1 a) Với m = 2, tìm giao điểm của (d) với đường thẳng (d1): y 3x 2 b) Với giá trị nào của m để (d) song song với đường thẳng (d2) y x c) Đường thẳng (d) cắt trục Ox tại điểm B, cắt trục Oy tại điểm A. Tìm m sao cho diện tích tam giác OAB bằng 1 (đvdt). + Cho hai biểu thức: 2 4 2 x x A x và 2 4 2 2 4 x xx B với x x 0 4 1) Tính giá trị của biểu thức A khi x = 9. 2) Chứng minh: 2 x B x. 3) Đặt P AB. So sánh P và 2. 4) Tìm giá trị nguyên dương nhỏ nhất của P.
Đề khảo sát Toán 9 tháng 01 năm 2022 trường M.V. Lômônôxốp - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 tháng 01 năm 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 6 giờ bể sẽ đầy nước. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2 5 bể. + Cho hai hàm số y m 3x m 1 và y 2x 3 có đồ thị lần lượt là (d1) và (d2) a) Với m = 1, tìm tọa độ giao điểm của hai đường thẳng trên. b) Chứng minh rằng điểm cố định mà đường thẳng (d1) luôn đi qua thuộc đường thẳng (d) có phương trình: y 3x 1. + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD, CE cắt nhau tại H. 1) Chứng minh rằng: 4 điểm B, E, D, C cùng thuộc một đường tròn. 2) Chứng minh rằng: AE.AB = AD.AC. 3) Vẽ đường kính AK của đường tròn (O). Gọi I là trung điểm của BC. a) Chứng minh rằng: ba điểm H, I, K thẳng hàng. b) Chứng minh rằng: ED < 2OI.
Đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ - Hà Nội
Đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề). Trích dẫn đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội : + Cho hệ phương trình mx y m x my (m là tham số). a) Giải hệ phương trình khi m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn tâm O có dây AB R 2. Đường kính CD vuông góc với AB tại I (D thuộc cung nhỏ AB). Trên tia đối của tia BA lấy điểm E sao cho ACE nhọn. CE cắt (O) tại K, nối DK cắt AB tại M. a) Chứng minh 4 điểm C, I, M, K cùng thuộc một đường tròn. b) Chứng minh EM EI EB EA c) Chứng minh DK là phân giác của góc AKB. Tìm vị trí điểm E trên tia đối của tia BA (vẫn thỏa mãn đề bài) để M là trung điểm của BI. + Cho các số thực x, y thỏa mãn x xy y Chứng minh x y 0.