Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn

Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu lớp 9 môn Toán chủ đề phương trình bậc nhất hai ẩn Tài liệu này gồm 12 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết: 1. Khái niệm phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn \(ax + by = c\) là phương trình có dạng \(ax + by = c\) (trong đó \(a\), \(b\), \(c\) là các số cho trước và \(a \neq 0\) hoặc \(b \neq 0\). Nếu điểm \(M(x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì \(M(x, y) (0, 0)\) là một nghiệm của phương trình. Trong mặt phẳng tọa độ \(Oxy\), mỗi nghiệm \(x, y (0, 0)\) của phương trình \(ax + by = c\) được biểu diễn bởi một điểm có tọa độ \((x, y) (0, 0)\) trong đó \(x\) là hoành độ và \(y\) là tung độ. 2. Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình \(ax + by = c\) luôn có vô số nghiệm. Tập nghiệm của phương trình được biểu diễn bởi đường thẳng \(d: ax + by = c\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = b - \frac{c}{a}x\) hoặc \(y = \frac{c}{b}\) khi đó đường thẳng \(d\) cắt cả hai trục tọa độ. Đường thẳng \(d\) là đồ thị hàm số: \(y = \frac{-ax + c}{b}\). B. Bài tập và các dạng toán: Dạng 1: Xét xem một cặp số có là nghiệm của phương trình bậc nhất hai ẩn hay không? Cách giải: Nếu cặp số thực \( (x, y) (0, 0)\) thỏa mãn \(ax + by = c\) thì nó được gọi là nghiệm của phương trình \(ax + by = c\). Dạng 2: Tìm điều kiện của tham số để đường thẳng \(ax + by = c\) thỏa mãn điều kiện cho trước. Cách giải: Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = \frac{c}{a}\), \(y = R\) và đường thẳng song song hoặc trùng với trục tung \(Oy\). Nếu \(a \neq 0\) và \(b \neq 0\) thì phương trình có nghiệm: \(x = R\), \(y = \frac{c}{b}\) và đường thẳng song song hoặc trùng với trục hoành \(Ox\). Dạng 3: Tìm các nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách giải: Để tìm các nghiệm nguyên của phương trình \(ax + by = c\), ta làm như sau: Bước 1: Tìm một nghiệm nguyên \( (x, y) (0, 0)\) của phương trình. Bước 2: Đưa phương trình về dạng \(ax - x + by - y = 0\) từ đó dễ dàng tìm được các nghiệm nguyên của phương trình. BÀI TẬP TRẮC NGHIỆM BÀI TẬP VỀ NHÀ File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông
Nội dung Tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông Bản PDF - Nội dung bài viết Tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông Tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông Tài liệu này được biên soạn bởi thầy giáo Trần Đình Cư, gồm 24 trang với tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông (Toán lớp 9 phần Hình học). Mỗi bài toán đều đi kèm đáp án và lời giải chi tiết để giúp học sinh hiểu rõ hơn về vấn đề. Trong tuyển tập này, có một số bài toán đặc biệt như: Bài toán 1: Một người thợ sử dụng thước ngắm để đo chiều cao một cây dừa. Với các kích thước đã đo được, hỏi chiều cao của cây đó là bao nhiêu? Bài toán 2: Tính độ dài AB và số đo góc ACB khi muốn tính khoảng cách từ điểm A đến điểm B bên kia bờ sông. Bài toán 3: Xác định góc mà chiếc thang tre cần tạo với mặt đất để hái một buồng cau từ một cây cao. Bài toán 4: Tính góc nghiêng mà máy bay tạo khi hạ cánh xuống mặt đất và khoảng cách cần bay để tạo góc nghiêng mong muốn. Bài toán 5: Xác định khoảng cách cần đặt chân thang để đảm bảo an toàn khi sử dụng. Đây là tài liệu hữu ích giúp học sinh áp dụng hệ thức lượng vào thực tế một cách linh hoạt và chính xác. Mong rằng tuyển tập bài toán này sẽ giúp ích cho việc học tập của các em!
Hệ thức lượng trong tam giác vuông Lương Anh Nhật
Nội dung Hệ thức lượng trong tam giác vuông Lương Anh Nhật Bản PDF - Nội dung bài viết Hệ thức lượng trong tam giác vuông Hệ thức lượng trong tam giác vuông Tài liệu được viết bởi thầy giáo Lương Anh Nhật, gồm 31 trang, tập trung vào hệ thức lượng trong tam giác vuông dành cho học sinh lớp 9 phần hình học. Tài liệu này bao gồm lý thuyết chi tiết, các ví dụ minh họa và bài tập chuyên đề. Trong chương I của tài liệu, được chia thành các bài nhỏ như sau: Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông Đặt vấn đề Một số hệ thức về cạnh và đường cao trong tam giác Bài 2: Tỷ số lượng giác của một góc nhọn Khái niệm tỷ số lượng giác của một góc nhọn Tỷ số lượng giác của hai góc phụ nhau Một số hệ thức cơ bản Bảng giá trị lượng giác của một số góc đặc biệt Bài 3: Một số hệ thức về cạnh và góc trong tam giác vuông Các hệ thức Giải tam giác vuông Phần cuối tài liệu chứa hướng dẫn một số bài tập liên quan đến các nội dung đã được trình bày trong chương I.
Chinh phục các dạng toán Đại số 9 Lương Anh Nhật
Nội dung Chinh phục các dạng toán Đại số 9 Lương Anh Nhật Bản PDF - Nội dung bài viết Chinh phục toán Đại số 9 với tài liệu của thầy giáo Lương Anh Nhật Chinh phục toán Đại số 9 với tài liệu của thầy giáo Lương Anh Nhật Tài liệu "Chinh phục các dạng toán Đại số 9" được biên soạn bởi thầy giáo Lương Anh Nhật và bao gồm tổng cộng 62 trang. Trên từng trang sách, thầy giáo hướng dẫn chi tiết về phương pháp giải các dạng toán đại số phức tạp cho học sinh lớp 9. Chương đầu tiên của tài liệu bao gồm nhiều bài tập liên quan đến Căn bậc hai và bậc ba. Thầy giáo giới thiệu với học sinh cách giải các bài toán liên quan đến căn bậc hai, biến đổi đơn giản biểu thức chứa căn thức bậc hai, giải phương trình chứa căn thức thường gặp và cả giải các bài toán về căn bậc ba. Mỗi bài tập đều được hướng dẫn cụ thể để học sinh hiểu rõ và áp dụng vào thực hành. Chương tiếp theo bàn về Hàm số bậc nhất, một chủ đề rất quan trọng trong toán học. Thầy giáo Lương Anh Nhật giúp học sinh hiểu rõ về hàm số, các tính chất của hàm số bậc nhất và cách giải các bài tập liên quan. Cuối cùng, chương III tập trung vào Hệ hai phương trình bậc nhất hai ẩn số. Thầy giáo hướng dẫn học sinh cách giải phương trình bậc nhất hai ẩn số, hệ phương trình bậc nhất hai ẩn số và cách giải toán bằng cách lập phương trình. Mỗi bài tập đều đi kèm với hướng dẫn chi tiết để học sinh có thể tự tin giải quyết.
Chuyên đề hệ thức lượng trong tam giác vuông Lư Sĩ Pháp
Nội dung Chuyên đề hệ thức lượng trong tam giác vuông Lư Sĩ Pháp Bản PDF - Nội dung bài viết Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề này bao gồm 34 trang sách do thầy giáo Lư Sĩ Pháp biên soạn, nhằm hướng dẫn cách giải các dạng bài toán hình học liên quan đến tam giác vuông. Trên đây là một số nội dung chính trong chuyên đề: Phần 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông - Kiến thức cần nắm: Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền, một số hệ thức liên quan đến đường cao. - Bài tập thực hành. Phần 2: Tỉ số lượng giác của góc nhọn - Kiến thức cần nắm: Khái niệm tỉ số lượng giác của một góc nhọn, tỉ số lượng giác của hai góc phụ nhau. - Bài tập thực hành. Phần 3: Một số hệ thức về cạnh và góc trong tam giác vuông - Kiến thức cần nắm: Các hệ thức và công thức tính diện tích tam giác vuông. - Bài tập thực hành và ôn tập chương 1 về hệ thức lượng trong tam giác, tỉ số lượng giác của góc nhọn, cũng như các công thức tính diện tích. Đây là một tài liệu hữu ích giúp học sinh hiểu rõ và áp dụng những kiến thức cơ bản về hệ thức lượng trong tam giác vuông.