Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 2 Toán 12 năm 2022 - 2023 trường THPT Đại Đồng - Hòa Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra cuối học kì 2 môn Toán 12 năm học 2022 – 2023 trường THPT Đại Đồng, tỉnh Hòa Bình; đề thi có đáp án và hướng dẫn giải các bài toán vận dụng cao. Trích dẫn Đề cuối kì 2 Toán 12 năm 2022 – 2023 trường THPT Đại Đồng – Hòa Bình : + Cho hai hàm số 3 2 f x ax bx cx 2 và 2 g x dx ex 2 (abcde) có đồ thị cắt nhau tại 3 điểm có hoành độ lần lượt là 0; 2; 3 (tham khảo hình vẽ). Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx và y gx biết rằng 2 0 3 d 8 f x gx. + Cho hàm số y fx liên tục trên [0;3] và có đồ thị như hình vẽ dưới đây. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y fx trục hoành và các đường thẳng x x 0 3. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích V được tính theo công thức. + Trong không gian Oxyz cho hai điểm A(2;-4;1), B(−1;1;3) và phương trình của mặt phẳng (Px y z) 3 2 50. Một mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với (P) có phương trình dạng: ax by cz 11 0. Khẳng định nào sau đây là đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình (H) giới hạn tạo bởi đồ thị hàm số y x x 3, trục hoành và hai đường x 1 và x 2. Quay hình (H) quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành. + Trong không gian Oxyz, viết phương trình tham số và phương trình chính tắc của đường thẳng đi qua điểm A(1;2;3) và có vectơ chỉ phương u. + Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1;2;3) và bán kính bằng độ dài đoạn thẳng AB với A(1;-1;2) và B(2;1;4).
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Võ Văn Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?