Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch Toán 7

Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng. – Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. – Tính khoảng cách từ một điểm đến một đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2 . Quan hệ giữa đường vuông góc và đường xiên. – Sử dụng định lý đường vuông góc ngắn hơn đường xiên (từ một điểm đến cùng một đường thẳng). PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.