Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán

Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Bộ đề tinh túy ôn thi THPT Quốc gia 2017 môn Toán Lovebook
Nội dung Bộ đề tinh túy ôn thi THPT Quốc gia 2017 môn Toán Lovebook Bản PDF - Nội dung bài viết Bộ đề tinh túy ôn thi THPT Quốc gia 2017 môn Toán Lovebook Bộ đề tinh túy ôn thi THPT Quốc gia 2017 môn Toán Lovebook Sách Bộ đề tinh túy ôn thi THPT Quốc gia 2017 môn Toán Lovebook bao gồm 30 đề thi thử được biên soạn bởi gia đình Lovebook. Mỗi đề bao gồm 50 câu hỏi trắc nghiệm, kèm theo đáp án chi tiết và hướng dẫn giải rõ ràng, giúp học sinh ôn tập hiệu quả và nắm vững kiến thức trước kỳ thi quan trọng. Với 444 trang sách, sản phẩm này là lựa chọn lý tưởng cho những ai đang chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.
69 bài toán ứng dụng trong đề thi THPT Quốc gia 2017 Nguyễn Phú Khánh
Nội dung 69 bài toán ứng dụng trong đề thi THPT Quốc gia 2017 Nguyễn Phú Khánh Bản PDF - Nội dung bài viết 69 bài toán ứng dụng trong đề thi THPT Quốc gia 2017 của Nguyễn Phú Khánh 69 bài toán ứng dụng trong đề thi THPT Quốc gia 2017 của Nguyễn Phú Khánh Tài liệu này cung cấp 69 bài toán ứng dụng thường gặp trong đề thi thử THPT Quốc gia 2017. Đây là những bài toán mang tính thực tế và có thể áp dụng vào cuộc sống hàng ngày. Trong tài liệu, chúng ta có một ví dụ về một giáo viên đang đau đầu về việc tăng giá trà sữa để tối đa hóa thu nhập. Để làm được điều này, giáo viên cần phải tính toán kỹ lưỡng về giá cả và lượng khách hàng tiềm năng. Việc tăng giá trà sữa mỗi ly sẽ ảnh hưởng đến số lượng khách hàng đến quán, và giáo viên cần tìm ra mức giá phù hợp để thu nhập lớn nhất. Ngoài ra, tài liệu cũng đề cập đến một bài toán khác về con cá hồi bơi ngược dòng để vượt qua khoảng cách 300km. Bằng cách tính toán vận tốc bơi tối ưu, chúng ta có thể xác định được năng lượng tiêu tốn ít nhất của cá trong quãng đường đó. Cuối cùng, thông qua bài toán về việc tối ưu hóa diện tích toàn phần của hình trụ, chúng ta có thể hiểu rõ hơn về cách thiết kế sao cho chi phí nguyên liệu làm vỏ lon là ít nhất. Với việc học và áp dụng các bài toán trong tài liệu, học sinh không chỉ rèn luyện kỹ năng tính toán mà còn phát triển khả năng tư duy logic và sáng tạo. Đây thực sự là một tài liệu hữu ích để chuẩn bị cho kỳ thi THPT Quốc gia.
Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài
Nội dung Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài Bản PDF - Nội dung bài viết Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài Sách này bao gồm 20 đề trắc nghiệm và hướng dẫn giải, tổng cộng là 196 trang. Đây là tài liệu luyện thi quan trọng cho học sinh ôn tập và chuẩn bị cho kỳ thi THPT Quốc gia năm 2017. Mỗi đề trắc nghiệm được biên soạn kỹ lưỡng, giúp học sinh rèn luyện kỹ năng giải các câu hỏi trong môn Toán một cách hiệu quả. Hướng dẫn giải chi tiết và dễ hiểu cũng sẽ giúp học sinh nắm vững kiến thức và cải thiện kỹ năng làm bài thi. Đây thực sự là công cụ hữu ích để học sinh đạt kết quả cao trong kỳ thi quan trọng này.
Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương
Nội dung Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương Bản PDF - Nội dung bài viết Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Trong tài liệu này, Nguyễn Đại Dương đã tổng hợp cách giải các dạng toán nâng cao có khả năng xuất hiện trong câu điểm 9 của đề thi THPT Quốc gia môn Toán. Tài liệu gồm 23 trang, trình bày chi tiết và cụ thể về cách giải các bài toán phức tạp mà thường xuất hiện trong phần điểm cao của đề thi. Theo Nguyễn Đại Dương, xu hướng mới của đề thi Toán THPT Quốc gia là các bài toán câu điểm 9 dần chuyển sang các dạng khác, không chỉ xoay quanh Phương trình – Bất phương trình – Hệ phương trình như trước. Các dạng bài toán có khả năng xuất hiện theo ưu tiên sẽ bao gồm: Phương trình – Bất phương trình chứa tham số. Phương trình – Bất phương trình chứa Mũ và Logarit. Bài toán thực tế. Với tài liệu này, Nguyễn Đại Dương hi vọng rằng các học sinh sẽ trang bị cho mình kiến thức và kỹ năng giải quyết các dạng bài toán này. Nếu gặp phải trong phòng thi, các em sẽ có đủ kiến thức và tự tin để giải quyết. Đây là một tài liệu hữu ích và cần thiết để chuẩn bị tốt cho kỳ thi quan trọng.