Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nhị thức Newton và ứng dụng - Nguyễn Minh Tuấn

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề nhị thức Newton và ứng dụng, tài liệu gồm 101 trang được biên soạn bởi các tác giả nhóm Tạp chí và Tư liệu Toán học: Nguyễn Minh Tuấn (chủ biên), Doãn Quang Tiến, Nguyễn Mai Hoàng Anh, Ngô Nguyên Quỳnh, Trần Văn Dũng; đề cập đến gần như là đầy đủ các dạng toán liên quan đến nhị thức Newton: tìm hệ số trong khai triển, chứng minh đẳng thức tổ hợp, và các biến dạng khác có thể gặp trong đề thi THPT Quốc Gia môn Toán hay đề thi học sinh giỏi môn Toán cấp tỉnh mảng không chuyên, nhằm giúp các bạn có cái nhìn bao quát về chủ đề này. Khái quát nội dung tài liệu nhị thức Newton và ứng dụng – Nguyễn Minh Tuấn: Phần 1 . Kí hiệu tổ hợp. + Vấn đề 1.1 Hệ số nhị thức. + Vấn đề 1.2 Công thức tổ hợp. Phần 2 . Tam giác Pascal và sự hình thành của công thức nhị thức Newton. + Vấn đề 2.1 Sự hình thành của công thức nhị thức. + Vấn đề 2.2 Câu chuyện về nhị thức Newton. + Vấn đề 2.3 Tam giác Pascal. + Vấn đề 2.4 Chứng minh công thức tổng quát p_n,k và công thức nhị thức Newton. + Vấn đề 2.5 Chứng minh công thức nhị thức Newton. Phần 3 . Một số tính chất cơ bản. + Vấn đề 3.1 Nhắc lại khai triển nhị thức Newton. + Vấn đề 3.2 Dấu hiệu các bài toán sử dụng nhị thức Newton trong các bài toán chứng minh đẳng thức. [ads] Phần 4 . Các dạng toán liên quan tới nhị thức newton. + Vấn đề 4.1 Bài toán khai triển nhị thức và chứng minh đẳng thức cơ bản. + Vấn đề 4.2 Bài toán về hệ số lớn nhất. + Vấn đề 4.3 Chứng minh các đẳng thức. + Vấn đề 4. Các đẳng thức cơ bản. + Vấn đề 4. Ứng dụng một số tính chất đẳng thức đặc biệt. + Vấn đề 4.4 Ứng dụng đạo hàm trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.5 Ứng dụng tích phân trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.6 Ứng dụng số phức chứng minh đẳng thức tổ hợp. + Vấn đề 4.7 Đồng nhất hệ số. + Vấn đề 4.8 Bài tập tự luyện. Phần 5 . Bất đẳng thức liên quan tới công thức tổ hợp. + Vấn đề 5.1 Lí thuyết và ví dụ minh họa. + Vấn đề 5.2 Bài tập tự giải. Phần 6 . Tính chất số học của hệ số nhị thức. + Vấn đề 6.1 Đôi nét về lịch sử nghiên cứu tính chất số học của hệ số nhị thức. + Vấn đề 6.2 Các bài toán minh họa.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nhị thức Newton (Niu-tơn) - Lê Văn Đoàn
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 tài liệu tự học chủ đề Nhị thức Newton (Niu-tơn), tài liệu gồm 42 trang bao gồm lý thuyết cơ bản cùng một số bài tập thuộc các dạng toán nhị thức Newton thường gặp trong chương trình Đại số và Giải tích 11. Khái quát nội dung tài liệu chuyên đề nhị thức Newton (Niu-tơn) – Lê Văn Đoàn: A. LÝ THUYẾT CẦN NẮM VỮNG 1. Nhị thức Newton . 2. Nhận xét :  + Trong khai triển (a ± n)^n có n + 1 số hạng và các hệ số của các cặp số hạng cách đều số hạng đầu và số hạng cuối thì bằng nhau. + Số hạng tổng quát có dạng và số hạng thứ N thì k = N – 1. + Trong khai triển (a – b)^n thì dấu đan nhau, nghĩa là + rồi – rồi + …. + Số mũ của a giảm dần, số mũ của b tăng dần nhưng tổng số mũ a và b bằng n. 3. Tam giác Pascal : Các hệ số của khai triển: (a + b)^0, (a + b)^1, (a + b)^2 … (a + b)^n có thể xếp thành một tam giác gọi là tam giác PASCAL. [ads] B – CÁC DẠNG TOÁN NHỊ THỨC NEWTON + Dạng toán 1. Tìm hệ số hoặc số hạng trong khai triển nhị thức Newton. + Dạng toán 2. Chứng minh hoặc tính tổng. + Dạng toán 3. Tìm hệ số hoặc số hạng dạng có điều kiện (kết hợp giữa dạng toán 1 và dạng toán 2). Trong mỗi dạng toán đều bao gồm tóm tắt phương pháp giải, một số bài tập mẫu và bài tập tương tự, bài tập về nhà giúp học sinh tự rèn luyện.
108 bài toán tổ hợp - phương pháp
Tài liệu gồm 28 trang tuyển chọn 108 bài toán tổ hợp – phương pháp hay và đặc sắc giúp học sinh tham khảo nâng cao khả năng giải các dạng toán chủ đề tổ hợp và phương pháp, tài liệu được biên soạn bởi TS. Nguyễn Văn Lợi (Chủ biên) và Ngô Thị Nhã. Mục lục tài liệu 108 bài toán tổ hợp – phương pháp : 1. Biểu đồ Venn – Logic. 2. Nguyên lý Dirichlet (chuồng và thỏ) I. 3. Nguyên lý Dirichlet II. 4. Các bài toán trên bàn cờ. 5. Hình học tổ hợp. 6. Chuyên đề số học. 7. Trò chơi – Games. 8. Quy nạp. 9. Tổng hợp. 10. Thêm thêm. 11. Những viên ngọc của xứ sở kim cương.
Một số bài toán tổ hợp đếm - Phạm Thị Hiên
Tài liệu gồm 70 trang đề cập đến một số bài toán tổ hợp trong toán học phổ thông, cụ thể là các bài toán tổ hợp sử dụng các phương pháp đếm từ cơ bản đến nâng cao. CHƯƠNG 1 – CƠ SỞ LÍ THUYẾT VỀ TỔ HỢP 1. Nhắc lại về tập hợp. 2. Quy tắc cộng và quy tắc nhân. 3. Giai thừa và hoán vị. 4. Chỉnh hợp, tổ hợp. 5. Chỉnh hợp lặp, hoán vị lặp và tổ hợp lặp. CHƯƠNG 2 – MỘT SỐ BÀI TOÁN TỔ HỢP CƠ BẢN 1. Một số bài toán đếm không lặp. + Bài toán lập số. + Bài toán chọn vật, chọn người, sắp xếp. + Bài toán tương tự. 2. Một số bài toán đếm có lặp. + Bài toán lập số. + Bài toán đếm sử dụng tổ hợp lặp. + Bài toán đếm sử dụng chỉnh hợp lặp. + Bài toán đếm sử dụng hoán vị lặp. + Bài toán phân bố các đồ vật vào trong hộp. + Bài toán tương tự. [ads] CHƯƠNG 3 – MỘT SỐ BÀI TOÁN TỔ HỢP SỬ DỤNG PHÉP ĐẾM NÂNG CAO 1. Một số bài toán sử dụng nguyên lý bù trừ. + Nguyên lý bù trừ. + Các bài toán giải bằng phương pháp bù trừ. 2. Một số bài toán giải bằng phương pháp song ánh. + Phương pháp song ánh. + Các bài toán tổ hợp giải bằng phương pháp song ánh. 3. Một số bài toán giải bằng phương pháp hàm sinh. + Bài toán chọn các phần tử riêng biệt. + Bài toán chọn các phần tử có lặp. 4. Một số bài toán giải bằng phương pháp hệ thức truy hồi. + Khái niệm mở đầu và mô hình hóa bằng hệ thức truy hồi. + Các bài toán tổ hợp giải bằng hệ thức truy hồi. + Các bài toán tương tự. 5. Bài toán giải bằng nguyên lí cực hạn – khả năng xảy ra nhiều nhất, ít nhất. 6. Bài toán giải bằng phương pháp sắp xếp thứ tự. 7. Bài toán giải bằng phương pháp liệt kê các trường hợp.
Chuyên đề tự luận và trắc nghiệm tổ hợp và xác suất - Lư Sĩ Pháp
giới thiệu đến bạn đọc tài liệu chuyên đề tự luận và trắc nghiệm tổ hợp và xác suất do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 75 trang với nội dung bám sát chương trình Đại số và Giải tích 11 chương 2. Tài gồm 4 phần : Phần 1 . Kiến thức cần nắm: Hệ thống hóa lại các kiến thức trọng tâm về tổ hợp và xác suất trong SGK Đại số và Giải tích 11 chương 2. Phần 2 . Dạng bài tập có hướng dẫn giải và bài tập đề nghị: Phân dạng và tuyển chọn các bài tập tự luận đặc sắc với nhiều biến dạng khác nhau, kèm với đó là lời giải chi tiết nhằm giúp các em học sinh nắm được phương pháp và kỹ năng giải toán. Phần 3 . Phần trắc nghiệm có đáp án: Tuyển tập câu hỏi và bài tập trắc nghiệm chủ đề tổ hợp và xác suất, phù hợp với định hướng thi trắc nghiệm, đồng thời phục vụ cho quá trình ôn thi THPT Quốc gia môn Toán của học sinh khối 12. Phần 4 . Một số đề ôn kiểm tra: Tuyển chọn các đề kiểm tra Đại số và Giải tích 11 chương 2 có đáp án và hướng dẫn giải giúp học sinh đánh giá lại các kiến thức đã nắm được, các phần kiến thức cần cải thiện.