Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Gia Lâm - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Sáu ngày 21 tháng 04 năm 2023. Trích dẫn Đề cuối kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Gia Lâm – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm trong 6 ngày thì xong công việc. Hai người làm cùng nhau trong 3 ngày thì người thứ nhất được chuyển đi làm công việc khác, người thứ hai làm một mình trong 4 ngày nữa thì hoàn thành công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu? + Một bồn nước inox có dạng một hình trụ với đường kính đáy 60cm, chiều cao là 1m. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (Bỏ qua chiều dày của vỏ thùng và biết pi ~ 3,14). + Cho đường tròn tâm (O;R) và một điểm M nằm ngoài đường tròn, kẻ tiếp tuyến MA (A là tiếp điểm). Kẻ đường kính AOC và dây cung AB vuông góc với OM tại H. a) Chứng minh rằng: Tứ giác AOBM nội tiếp đường tròn và hãy xác định tâm của đường tròn ngoại tiếp tứ giác AOBM đó b) Kẻ dây CN của đường tròn (O) đi qua H. Tia MN cắt (O) tại điểm thứ hai là D. Chứng minh: MD.MN = MA2. c) Chứng minh ba điểm B, O, D thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Bắc Từ Liêm - Hà Nội
Theo đúng như kế hoạch đánh giá tổng kết chất lượng môn Toán của học sinh lớp 9, vừa qua, phòng Giáo dục và Đào tạo UBND Quận Bắc Từ Liêm – Hà Nội đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán 9 năm học 2018 – 2019. Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Bắc Từ Liêm – Hà Nội được biên soạn theo dạng tự luận với 5 bài toán, học sinh làm bài trong 90 phút, kỳ thi được diễn ra vào ngày 11/04/2019. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào 1 bể không có nước sau 4 giờ thì bể đầy. Nếu chảy một mình thì vòi 1 chảy đầy bể nhanh hơn vòi 2 là 6 giờ. Hỏi nếu chảy một mình thì mỗi vòi chảy đầy bể trong bao lâu? [ads] + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2 – mx. a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi giá trị của m. b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn điều kiện x1^2.x2 + x2^2.x1 = 2020. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R) đường cao AH. Gọi M và N lần lượt là hình chiếu của điểm H trên cạnh AB, AC. a) Chứng minh rằng tứ giác AMHN nội tiếp được đường tròn. b) Chứng minh rằng AM.AB=AH^2. Từ đó chứng minh AM.AB= AN.AC. c) Hai đường thẳng NM và BC cắt nhau tại Q. Chứng minh góc AMN = góc ACB và QH^2 = QM.QN. d) Cho góc BAC = 60° và R = 3cm. Tính diện tích hình viên phân giới hạn bởi dây BC và cung BC nhỏ.
Đề thi học kỳ 2 Toán 9 năm học 2018 - 2019 sở GDĐT Nam Định
Thứ Ba ngày 09 tháng 04 năm 2019, sở Giáo dục và Đào tạo Nam Định tổ chức kỳ thi khảo sát chất lượng học kỳ 2 môn Toán 9 năm học 2018 – 2019, kỳ thi nhằm kết giá tổng kết lại những kiến thức Toán mà các em học sinh lớp 9 đã được học trong thời gian vừa qua. Đề thi học kỳ 2 Toán 9 năm học 2018 – 2019 sở GD&ĐT Nam Định được biên soạn theo hình thức kết hợp trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm 08 câu, chiếm 2 điểm, phần tự luận gồm 05 câu, chiếm 8 điểm, học sinh làm bài thi trong 120 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề thi học kỳ 2 Toán 9 năm học 2018 – 2019 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông tại A (AB khác AC) có đường cao AH và I là trung điểm của BC. Đường tròn tâm O đường kính AH cắt AB, AC lần lượt tại M và N (M và N khác A). a) Chứng minh AB.AM = AC.AN. b) Chứng minh tứ giác BMNC là tứ giác nội tiếp. c) Gọi D là giao điểm của AI và MN. Chứng minh 1/AD = 1/HB + 1/HC. + Trên đường tròn (O;R) lấy hai điểm A, B sao cho số đo cung AB lớn bằng 270 độ. Độ dài dây cung AB là? + Cho phương trình x^2 – mx + m – 1 = 0 (m là tham số). a) Giải phương trình với m = 3. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1 – 2×2 = 3.
Đề thi học kỳ 2 Toán 9 năm học 2018 - 2019 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến thầy, cô và các bạn học sinh lớp 9 đề thi học kỳ 2 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội, kỳ thi được diễn ra vào thứ Tư ngày 10 tháng 04 năm 2019 nhằm tổng kết lại các kiến thức Toán 9 mà học sinh đã học trong thời gian vừa qua. Đề thi học kỳ 2 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội gồm 1 trang với 5 bài toán dạng tự luận, học sinh làm bài trong 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm học 2018 – 2019 phòng GD&ĐT Đống Đa – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một rạp chiếu phim có 120 chỗ ngồi được sắp xếp thành những dãy ghế, mỗi dãy ghế có số ghế như nhau. Sau đó, khi sửa chữa người ta đã bổ sung thêm 2 dãy ghế. Để giữ nguyên số ghế của rạp, mỗi dãy ghế được kê ít hơn so với ban đầu là ghế. Hỏi trước khi sửa chữa thì rạp chiếu phim có bao nhiêu dãy ghế? [ads] + Cho phương trình: x^2 – (m + 4)x + 4m = 0 (m là tham số). 1) Giải phương trình khi m = -1. 2) Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1; x2 thỏa mãn x1^2 + (m + 4)x2 = 16. + Cho tam giác ABC nội tiếp đường còn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H. 1) Chứng minh tứ giác ACEH là tứ giác nội tiếp. 2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF. 3) Chứng minh rằng đường tròn ngoại tiếp tam giác CHO đi qua điểm D. 4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Đề thi học kỳ 2 Toán 9 năm 2017 - 2018 phòng GD và ĐT Thanh Oai - Hà Nội
Đề thi học kỳ 2 Toán 9 năm 2017 – 2018 phòng GD và ĐT Thanh Oai – Hà Nội được biên soạn theo hình thức tự luận, đề gồm 1 trang với 5 bài toán, thời gian làm bài dành cho các em học sinh là 90 phút, đề thi có lời giải chi tiết và thang điểm. Các dạng toán có trong đề thi HK2 Toán 9 : + Giải hệ phương trình bậc nhất 2 ẩn. + Giải phương trình bậc hai 1 ẩn. + Rút gọn biểu thức. + Giải toán bằng cách lập phương trình hoặc hệ phương trình. + Bài toán về parabol và đường thẳng. + Bài toán hình học phẳng về đường tròn. + Min – Max của biểu thức.