Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT C Hải Hậu - Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT C Hải Hậu, tỉnh Nam Định; đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: phần trắc nghiệm một lựa chọn, phần trắc nghiệm đúng / sai, phần tự luận. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT C Hải Hậu – Nam Định : + Khối 10 trường THPT C Hải Hậu có 21 đoàn viên xuất sắc trong đó có 10 đoàn viên nam và 11 đoàn viên nữ. Đoàn trường muốn chọn 5 đoàn viên trong số đó để tuyên dương trong lễ kỉ niệm ngày thành lập Đoàn 26/03/2024. Hỏi có bao nhiêu cách chọn sao cho trong 5 đoàn viên được chọn có cả nam và nữ đồng thời số lượng đoàn viên nữ nhiều hơn số lượng đoàn viên nam. + Trong mặt phẳng Oxy cho đường thẳng dx y 2 10 và điểm M (2;-2). a) Viết phương trình tổng quát của đường thẳng d’ đi qua điểm M và vuông góc với đường thẳng d. b) Tìm tọa độ điểm N là hình chiếu vuông góc của điểm M trên đường thẳng d. c) Tìm tọa độ điểm K thuộc đường thẳng d và K cách M một khoảng bằng 7 2 biết K có tung độ nguyên. + Một con tàu muốn xuất phát từ hòn đảo A trở về bờ biển sau đó di chuyển đến hòn đảo B. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng Oxy), vị trí điểm A B có tọa độ lần lượt là A B 73 24, giả sử đường bờ biển có phương trình đường thẳng là ∆ 20 x y. Tìm tọa độ điểm M trên bờ biển mà tàu sẽ di chuyển đến sao cho quãng đường đi của tàu từ A đến B là ngắn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Đầm Dơi - Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Đầm Dơi, tỉnh Cà Mau.
Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Thầy Hùng có 45m lưới muốn rào một mảnh vườn hình chữ nhật để trồng rau, biết rằng một cạnh là tường. Thầy Hùng chỉ cần rào 3 cạnh còn lại của hình chữ nhật để làm vườn. Có bao nhiêu giá trị nguyên của x (như hình vẽ) để diện tích mảnh vườn không bé hơn 2 100m? + Từ các chữ số 1 2 3 5 7 8 9. Hỏi có bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau được lập từ các chữ số đã cho? + Một cái hộp có 9 viên bi, trong đó có 4 viên bi đỏ, 5 viên bi xanh. Từ cái hộp trên, lấy ra 4 viên bi. Hỏi có bao nhiêu cách chọn 4 viên bi có đủ 2 màu.
Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Hồ Nghinh - Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra định kỳ giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Hồ Nghinh, tỉnh Quảng Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Hồ Nghinh – Quảng Nam : + Trong mặt phẳng Oxy cho phương trình chính tắc của parabol là 2 y px 2 với p > 0. Khi đó parabol có tiêu điểm là? + Bảng dưới đây cho biết nồng độ bụi PM 2.5 trong không khí theo thời gian trong ngày 25 3 2021 tại một trạm quan trắc ở Thủ đô Hà Nội. Nồng độ bụi PM 2.5 tại thời điểm 8 giờ là? + Trong mặt phẳng hệ toạ độ Oxy cho đường thẳng ∆ 0 x y. Đường tròn C cắt ∆ tại hai điểm A B sao cho AB 2 6. Các tiếp tuyến của C tại hai điểm A B cắt nhau tại điểm M 0 6. a. Viết phương trình đường thẳng d qua M và vuông góc với ∆. b. Viết phương trình đường tròn C.
Đề giữa học kỳ 2 Toán 10 năm 2023 - 2024 trường THPT Đô Lương 3 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi đánh giá giữa học kỳ 2 môn Toán 10 năm học 2023 – 2024 trường THPT Đô Lương 3, tỉnh Nghệ An; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề giữa học kỳ 2 Toán 10 năm 2023 – 2024 trường THPT Đô Lương 3 – Nghệ An : + Trong mặt phẳng toạ độ Oxy cho điểm A(1; 2) và véctơ n = (3; 4). Viết phương trình tổng quát của đường thẳng d qua A nhận véctơ n = (3; 4) làm véctơ pháp tuyến. + Một cổng công viên có hình dạng là một parabol. Biết khoảng cách hai chân cổng đo được là 5 m. Chiều cao cổng là 6,25m. Bạn An đứng cách chân cổng 0,35 m thì đỉnh đầu bạn ấy vừa chạm cổng. Tính chiều cao bạn An (làm tròn hai chữ số thập phân). + Trong mặt phẳng toạ độ Oxy cho điểm I(1; 2) và đường thẳng Δ: 3x + 4y + 4 = 0. Viết phương trình đường tròn (C) tâm I, cắt đường thẳng Δtheo một dây cung có độ dài bằng 8. Tìm điểm M thuộc (C) sao cho khoảng cách từ M đến Δ lớn nhất.