Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 11 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Có n (n ≥ 2) đội bóng tham gia một giải đấu bóng đá theo thể thức đá vòng tròn một lượt. Mỗi trận có kết quả là hòa hoặc phân thắng thua. Nếu kết quả hoà thì mỗi đội đều được 1 điểm. Nếu kết quả phân thắng thua thì đội thắng được 3 điểm, đội thua được 0 điểm. Gọi h là hiệu số điểm của đội đứng đầu bảng và đội đứng cuối bảng. Nếu chỉ xét các tình huống sau khi giải đấu kết thúc không có hai đội nào bằng điểm nhau thì giá trị nhỏ nhất có thể của h là bao nhiêu trong các trường hợp: a. Số đội tham dự là n = 3. b. Số đội tham dự là n = 42. + Cho P x là đa thức bậc 2023 với các hệ số thực không âm. Giả sử abc là độ dài ba cạnh của một tam giác nhọn. Chứng minh rằng các số 2023 2023 2023 Pa Pb Pc cũng là độ dài ba cạnh của một tam giác nhọn. + Cho đường tròn (O) và dây cung BC cố định trên (O). Một điểm A thay đổi trên (O) sao cho tam giác ABC nhọn và AB BC. Các đường cao AD BE CF của tam giác ABC cắt nhau tại H. Gọi M N lần lượt là trung điểm của AC và BC. Gọi Q là điểm đối xứng với B qua O. Đường thẳng QM cắt BC tại P và cắt (O) tại R. Đường tròn ngoại tiếp tam giác BRP cắt BQ tại S. a. Chứng minh CH là trục đẳng phương của các đường tròn đường kính BM và AN. b. Chứng minh các điểm SFR thẳng hàng và đường thẳng MF đi qua một điểm cố định khi A thay đổi.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Xuân Ôn Nghệ An
Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Xuân Ôn Nghệ An Bản PDF Đề thi HSG Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Xuân Ôn – Nghệ An (vòng 2) gồm có 01 trang với 05 bài toán tự luận, học sinh có 150 phút để làm bài, kỳ thi nhằm tuyển chọn các em học sinh khối 11 giỏi Toán vào đội tuyển học sinh giỏi môn Toán lớp 11 của nhà trường, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Xuân Ôn – Nghệ An : + Cho tứ diện ABCD, trên hai cạnh AD và BC lần lượt lấy các điểm M và N sao cho AM/MD = CN/NB = 1/2. Hai điểm E, F lần lượt thuộc BM và DN sao cho EF // AC. Tính tỉ số EF/AC. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AD // BC và AD = 2BC. Gọi O là giao điểm của AC và BD, điểm M thay đổi nằm trong hình thang sao cho OM không song song với cạnh nào của hình thang. Qua M dựng đường thẳng song song với SO cắt các mp(SAB), (SBC), (SCD) và (SDA) lần lượt tại các điểm E, F, G và H. Chứng minh rằng: MF + 2(ME + MG) + 4MH = 9SO. + Gọi S là tập tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số trong tập S. Tính xác suất để số được chọn chia hết cho 45. File WORD (dành cho quý thầy, cô):
Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường Nguyễn Quán Nho Thanh Hóa
Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường Nguyễn Quán Nho Thanh Hóa Bản PDF Nhằm tuyển chọn và bồi dưỡng đội tuyển học sinh giỏi môn Toán lớp 11 của nhà trường, chuẩn bị tham dự kỳ thi học sinh giỏi Toán lớp 11 cấp tỉnh, vừa qua, trường THPT Nguyễn Quán Nho – Thanh Hóa đã tổ chức kỳ thi chọn HSG Toán lớp 11 năm học 2019 – 2020. Đề thi HSG Toán lớp 11 năm 2019 – 2020 trường Nguyễn Quán Nho – Thanh Hóa gồm có 01 trang với 05 bài toán, học sinh có 180 phút để làm bài, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 – 2020 trường Nguyễn Quán Nho – Thanh Hóa : + Xung quanh bờ ao của gia đình bác Nam trồng 20 cây chuối. Do không còn phù hợp bác muốn thay thế để trồng bưởi, lần đầu bác chặt ngẫu nhiên 4 cây. Tính xác suất để trong 4 cây bác Nam chặt không có hai cây nào gần nhau. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có ba góc đều nhọn và nội tiếp đường tròn tâm I. Gọi K là hình chiếu vuông góc của B trên đường thẳng AC, H là hình chiếu vuông góc của C trên đường thẳng BI. Các đường thẳng AC và KH lần lượt có phương trình là x + y + 1 = 0 và x + 2y – 1 = 0. Biết điểm B thuộc đường thẳng y – 5 = 0 và điểm I thuộc đường thẳng x + 1 = 0. Tìm tọa độ điểm C. + Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau tại O. Gọi H là hình chiếu vuông góc của O lên mặt phẳng (ABC) và P là điểm bất kỳ trong tam giác ABC. Chứng minh: PA^2/OA^2 + PB^2/OB^2 + PC^2/OC^2 = 2 + PH^2/OH^2. File WORD (dành cho quý thầy, cô):
Đề thi Olympic lớp 11 môn Toán năm 2019 2020 trường Lý Thánh Tông Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2019 2020 trường Lý Thánh Tông Hà Nội Bản PDF Đề thi Olympic Toán lớp 11 năm 2019 – 2020 trường Lý Thánh Tông – Hà Nội gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi nhằm tuyển chọn học sinh giỏi Toán khối 11 của nhà trường, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán lớp 11 năm 2019 – 2020 trường Lý Thánh Tông – Hà Nội : + Cho hình vuông ABCD (theo chiều dương) . Điểm I là tâm của hình vuông. Gọi H là trung điểm AD, K là trung điểm AH, L là trung điểm AI. Tìm ảnh của hình thang IHKL qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm I góc quay -90 độ và phép vị tự tâm D với tỷ số bằng 2. + Trong một chiếc hộp đồ chơi có 25 quả bóng nhỏ được đánh số từ 1 đến 25. Một em bé khi chơi đã lấy ngẫu nhiên ra 2 quả. Tính xác suất để em bé đó chọn được 2 quả có tổng số ghi trên 2 quả đó là một số lẻ? + Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên đạn là 0,6. Vận động viên đó bắn hai viên một cách độc lập. Tính xác suất để vận động viên đó bắn trúng mục tiêu đúng một viên? + Tìm tất cả các giá trị của m để phương trình (m – 1)sinx – 3cosx = m + 2 có nghiệm (m là tham số). + Trong mặt phẳng Oxy, cho điểm A(3;5) và đường tròn (C): (x – 3)^2 + (y + 4)^2 = 9. a) Tìm ảnh của điểm A qua phép tịnh tiến theo véctơ v = (-2;1). b) Tìm phương trình đường (C’) sao cho (C) là ảnh của (C’) qua phép vị tự tâm O với tỷ số vị tự bằng -2?
Đề thi chọn HSG lớp 11 môn Toán năm 2018 2019 trường Nho Quan A Ninh Bình
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2018 2019 trường Nho Quan A Ninh Bình Bản PDF Nhằm tuyển chọn các em học sinh khối 11 vào đội tuyển học sinh giỏi Toán lớp 11 của nhà trường, trường THPT Nho Quan A, tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 11 THPT năm học 2018 – 2019. Đề thi chọn HSG Toán lớp 11 năm 2018 – 2019 trường Nho Quan A – Ninh Bình dành cho học sinh khối 11 THPT chương trình chuẩn, đề có mã đề 123 với 56 câu trắc nghiệm và 5 bài toán tự luận, thang điểm bài thi là 20 điểm, thời gian học sinh làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán lớp 11 năm 2018 – 2019 trường Nho Quan A – Ninh Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông. b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tìm giá trị nhỏ nhất của đoạn SK. [ads] + Trong mặt phẳng Oxy cho đường tròn (C1): x^2 + y^2 = 13, đường tròn (C2): (x – 6)^2 + y^2 = 25. a) Tìm giao điểm của hai đường tròn (C1) và (C2). b) Gọi giao điểm có tung độ dương của (C1) và (C2) là A, viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau. + Cho hình chóp đều S.ABCD. Mặt phẳng (α) qua AB và vuông góc với mặt phẳng (SCD). Thiết diện tạo bởi (α) với hình chóp đã cho là: A. Hình thang vuông. B. Hình bình hành. C. Tam giác cân. D. Hình thang cân. File WORD (dành cho quý thầy, cô):