Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán quan hệ vuông góc trong không gian - Lê Duy Hiền

Tài liệu gồm 38 trang phân dạng và hướng dẫn giải các dạng toán quan hệ vuông góc trrong không gian, tài liệu do thầy Lê Duy Hiền biên soạn. Trong môn toán ở trường phổ thông phần hình học không gian giữ một vai trò, vị trí hết sức quan trọng. Ngoài việc cung cấp cho học sinh kiến thức, kĩ năng giải toán hình học không gian, còn rèn luyện cho học sinh đức tính, phẩm chất của con người lao động mới: cẩn thận, chính xác, có tính kỉ luật, tính phê phán, tính sáng tạo, bồi dưỡng óc thẩm mĩ, tư duy sáng tạo cho học sinh. Tuy nhiên trong quá trình giảng dạy tôi nhận thấy học sinh lớp 11 rất e ngại học môn hình học không gian vì các em nghĩ rằng nó trừu tượng, thiếu tính thực tế. Chính vì thế mà có rất nhiều học sinh học yếu môn học này, về phần giáo viên cũng gặp không ít khó khăn khi truyền đạt nội dung kiến thức và phương pháp giải các dạng bài tập hình học không gian. [ads] Hình học không gian là một phần rất quan trọng trong nội dung thi đại học của Bộ giáo dục, nếu học sinh không nắm kỹ bài thì các em sẽ gặp nhiều lúng túng khi làm hai câu trong về hình học không gian trong đề thi đại học. Qua nhiều năm giảng dạy môn học này tôi cũng đúc kết được một số kinh nghiệm nhằm giúp các em tiếp thu kiến thức được tốt hơn, từ đó mà chất lượng giảng dạy cũng như học tập của học sinh ngày được nâng lên. Do đây là phần nội dung kiến thức mới nên nhiều học sinh còn chưa quen với tính tư duy trừu tượng của nó, nên tôi nghiên cứu nội dung này nhằm tìm ra những phương pháp truyền đạt phù hợp với học sinh, bên cạnh cũng nhằm tháo gỡ những vướng mắc, khó khăn mà học sinh thường gặp phải với mong muốn nâng dần chất lượng giảng dạy nói chung và môn hình học không gian nói riêng. Từ lý do trên tôi đã khai thác, hệ thống hóa các kiến thức, tổng hợp các phương pháp thành một chuyên đề: Các dạng Toán về quan hệ vuông góc trong không gian

Nguồn: toanmath.com

Đọc Sách

Chuyên đề quan hệ vuông góc trong không gian Toán 11 CTST
Tài liệu gồm 140 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề quan hệ vuông góc trong không gian trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Xác định góc giữa hai đường thẳng. + Dạng 2. Hai đường thẳng vuông góc. BÀI 2 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. + Dạng 2. Chứng minh hai đường thẳng vuông góc. + Dạng 3. Thiết diện. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lí thuyết. + Dạng 2. Đường thẳng vuông góc với mặt phẳng. + Dạng 3. Đường thẳng vuông góc với đường thẳng. + Dạng 4. Xác định thiết diện. BÀI 3 . HAI MẶT PHẲNG VUÔNG GÓC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa. + Dạng 2. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến. + Dạng 3. Xác định góc giữa hai mặt phẳng bằng cách dùng định lý hình chiếu. + Dạng 4. Chứng minh hai mặt phẳng vuông góc. + Dạng 5. Dùng mối quan hệ vuông góc giải bài toán thiết diện. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lí thuyết. + Dạng 2. Xác định quan hệ vuông góc giữa hai mặt phẳng, mặt phẳng và đường thẳng. + Dạng 3. Xác định góc giữa hai mặt phẳng. + Dạng 4. Dựng mặt phẳng vuông góc với mặt phẳng cho trước. Thiết diện, diện tích thiết diện. BÀI 4 . KHOẢNG CÁCH. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Khoảng cách từ một điểm tới một mặt phẳng. + Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau. + Dạng 3. Thể tích khối chóp có cạnh bên vuông góc với đáy. + Dạng 4. Thể tích khối chóp có hình chiếu của đỉnh là các điểm đặc biệt trên mặt đáy (không trùng với các đỉnh của đa giác đáy). + Dạng 5. Thể tích khối chóp đều. + Dạng 6. Thể tích khối lăng trụ đứng – đều. + Dạng 7. Thể tích khối lăng trụ xiên. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 5 . GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. GÓC NHỊ DIỆN. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng. Xác định góc giữa đường thẳng và mặt phẳng. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng. Góc của đường thẳng với mặt phẳng.
Bài giảng khoảng cách trong không gian
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề khoảng cách trong không gian, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm vững khái niệm khoảng cách từ một điểm đến đường thẳng, từ một điểm đến mặt phẳng và khoảng cách đường thẳng đến mặt phẳng. + Nắm được khái niệm khoảng cách giữa hai đường thẳng, khoảng cách giữa hai mặt phẳng. + Nắm vững các tính chất về khoảng cách. Kĩ năng: + Xác định được hình chiếu của một điểm đến đường thẳng và trên mặt phẳng. + Biết cách tính khoảng cách trong từng trường hợp. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1. Khoảng cách từ một điểm tới một mặt phẳng. Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau. + Bài toán 1. Tính khoảng cách hai đường thẳng chéo nhau a và b trường hợp a vuông góc b. + Bài toán 2. Tính khoảng cách hai đường thẳng chéo nhau a và b không vuông góc. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc
Tài liệu gồm 50 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm vững điều kiện để đường thẳng vuông góc với mặt phẳng, điều kiện để hai mặt phẳng vuông góc. + Nắm được định lý ba đường vuông góc. + Phát biểu và vận dụng được cách tìm thiết diện bằng quan hệ vuông góc. Kĩ năng: + Chứng minh được đường thẳng vuông góc với mặt phẳng. + Chứng minh được hai mặt phẳng vuông góc. + Xác định được thiết diện và giải được các bài toán liên quan đến chu vi và diện tích của thiết diện. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Đường thẳng vuông góc với mặt phẳng. + Bài toán 1: Chứng minh đường thẳng vuông góc với mặt phẳng. + Bài toán 2: Chứng minh hai đường thẳng vuông góc. Dạng 2: Hai mặt phẳng vuông góc. Dạng 3: Dùng mối quan hệ vuông góc giải bài toán thiết diện. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng góc trong không gian
Tài liệu gồm 36 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề góc trong không gian, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3: Vectơ Trong Không Gian, Quan Hệ Vuông Góc. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Nắm được khái niệm góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. + Nắm được phương pháp tính góc trong mỗi trường hợp cụ thể. Kĩ năng: + Thành thạo các bước tính góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng, góc giữa hai mặt phẳng. + Vận dụng các quy tắc tính góc vào giải các bài tập liên quan. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1. Góc giữa hai đường thẳng. Dạng 2. Góc giữa đường thẳng và mặt phẳng. + Bài toán 1. Bài tập củng cố lý thuyết. + Bài toán 2. Xác định góc giữa đường thẳng và mặt phẳng. Dạng 3. Góc giữa hai mặt phẳng. + Bài toán 1. Các bài tập củng cố lý thuyết. + Bài toán 2. Xác định góc giữa hai mặt phẳng bằng cách dùng định nghĩa. + Bài toán 3. Xác định góc giữa hai mặt phẳng dựa trên giao tuyến. + Bài toán 4. Xác định góc giữa hai mặt phẳng bằng cách dùng đinh lý hình chiếu. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.