Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Trần Khai Nguyên - TP HCM

Kỳ thi cuối học kì 1 môn Toán 10 là kỳ thi rất quan trọng đối với các em học sinh lớp 10, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 10 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 10 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Viết phương trình của parabol (P): y = ax2 + bx – 3 biết (P) có trục đối xứng là x = -4/3 và đi qua điểm M(-2;1). + Cho tam giác ABC có AB = 5, BC = 7, CA = 8. Tính AB.AC và góc BAC. + Tìm giá trị của tham số m để phương trình √(x2 + 2x + 2m) = 2x + 1 có 2 nghiệm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 10 năm học 2020 - 2021 sở GDĐT Vĩnh Phúc
Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Lê Quý Đôn - Hà Nội
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT Quang Trung - Hà Nội
Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 03 câu, chiếm 03 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội : + Cho Parabol (P): y = x2 – 4x + m – 1 và đường thẳng (d): y = -2mx + 3. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) khi m = 4. b) Tìm tất cả các giá trị thực của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ âm. + Giải phương trình √(21 – x2 – 4x) = x + 3. + Trong mặt phẳng Oxy, cho tam giác ABC có A(2;1), B(1;1), C(-3;4). a) Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC. b) Tìm tọa độ điểm M thuộc trục hoành sao cho (MA + MB) đạt giá trị nhỏ nhất.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 12 năm 2020, trường THCS & THPT Nguyễn Tất Thành, trực thuộc trường Đại học Sư Phạm Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, đề gồm 02 trang, phần trắc nghiệm gồm 12 câu (03 điểm), phần tự luận gồm 04 câu (07 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(-1;1), C(5;-1). a. Tính BA.CB và độ dài trung tuyến AM của tam giác ABC. b. Tìm tọa độ tâm đường tròn ngoại tiếp của tam giác ABC. + Cho tam giác ABC có AB = 2√2, AC = 3 và BAC = 135 độ. Gọi M là trung điểm của BC, điểm N thỏa mãn AN = x.AC với x thuộc R. Tìm x biết AM vuông góc với BN. + Biết phương trình (3m + 2n – 8)x = m – 3n + 1 có vô số nghiệm. Giá trị của biểu thức m2 + n2 bằng?