Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 2019 sở GD ĐT Hưng Yên

Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 2019 sở GD ĐT Hưng Yên Bản PDF Sytu giới thiệu đến thầy, cô và các em nội dung đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên, đề gồm 01 trang với 06 bài toán tự luận, học sinh làm bài thi trong thời gian 180 phút, kỳ thi nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán THPT đang học tập tại các trường THPT tại tỉnh Hưng Yên để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Hưng Yên tham dự kỳ thi HSG Toán THPT cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên : + Cho hàm số y = x^4 – mx^2 + 2m – 2 (C) với m là tham số. Gọi A là một điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm các giá trị của m để tiếp tuyến của đồ thị (C) tại A cắt đường tròn (T): x^2 + y^2 = 4 tại hai điểm phân biệt tạo thành một dây cung có độ dài nhỏ nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a và góc ABC = 60 độ. Gọi E, F lần lượt là trung điểm của các cạnh SC, SD. Biết SA = SC = SD và mặt phẳng (ABEF) vuông góc với mặt bên (SCD), tính thể tích khối chóp S.ABCD theo a. + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + cx + 1 với a, b, c là số thực không âm. Biết rằng f(x) = 0 có 4 nghiệm thực, chứng minh f(2018) = 2019^4. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Thừa Thiên Huế
Thứ Tư ngày 02 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh khối 12 năm học 2019 – 2020 môn Toán Phổ Thông, nhằm chọn ra những em học sinh xuất sắc, bổ sung vào đội tuyển học sinh giỏi Toán của tỉnh nhà, tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm 2020. Đề thi chọn HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế gồm có 06 bài toán tự luận, đề thi gồm có 01 trang, thời gian học sinh hoàn thành bài thi là 180 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên gồm ba chữ số đôi một khác nhau được chọn từ các chữ số 1; 2; 3; 4; 5; 6. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn có chữ số hàng đơn vị gấp đôi chữ số hàng trăm. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm E(3;4), đường thẳng d: x + y −1 = 0 và đường tròn (C): x^2 + y^2 + 4x − 2y − 4 = 0. Gọi M (m;1−m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB đến đường tròn (C) với A, B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. a) Viết phương trình đường thẳng AB theo m. b) Tìm tọa độ điểm M sao cho đường tròn (E) có chu vi lớn nhất. + Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a. Góc hợp giữa cạnh bên với mặt đáy bằng α. a) Tính thể tích khối chóp S.ABCD theo a và α. b) Giả sử a không đổi, α thay đổi. Xác định α để thể tích khối chóp S.ABCD đạt giá trị lớn nhất.
Toàn cảnh đề thi HSG môn Toán các tỉnh thành năm học 2018 - 2019
Tài liệu gồm 623 trang được tổng hợp bởi thầy Vũ Ngọc Thành, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi học sinh giỏi môn Toán các tỉnh thành trong năm học 2018 – 2019, giúp giáo viên và học sinh có cái nhìn tổng quan về kỳ thi HSG Toán cấp tỉnh. Khái quát nội dung tài liệu toàn cảnh đề thi HSG môn Toán các tỉnh thành năm học 2018 – 2019: Chuyên đề 1 và chuyên đề 2: Parabol và bài toán quy hoạch. Chuyên đề 3: Phương trình. Chuyên đề 4: Bất hương trình. Chuyên đề 5: Hệ phương trình. Chuyên đề 6: Bất đẳng thức. Chuyên đề 7: Giá trị lớn nhất giá trị nhỏ nhất. Chuyên đề 8: Lượng giác. Chuyên đề 9: Bài toán đếm. Chuyên đề 10: Xác suất. [ads] Chuyên đề 11: Nhị thức Newton. Chuyên đề 12: Dãy số, giới hạn. Chuyên đề 13: Hàm số liên tục & đạo hàm. Chuyên đề 14: Khảo sát hàm số và các bài toán liên quan. Chuyên đề 15: Mũ & Logarit. Chuyên đề 16: Nguyên hàm – tích phân và ứng dụng của tích phân. Chuyên đề 17: Số phức. Chuyên đề 18: Véc tơ và hình học phẳng. Chuyên đề 19: Tọa độ trong mặt phẳng. Chuyên đề 20: Hình học không gian thuần túy. Chuyên đề 21: Nón – trụ – cầu. Chuyên đề 22: Tọa độ trong không gian. Chuyên đề 23: Số học.
Đề thi chọn đội tuyển học sinh giỏi Toán năm 2020 sở GDĐT Cao Bằng
Ngày …/09/2019, sở Giáo dục và Đào tạo tỉnh Cao Bằng tổ chức kỳ thi chọn đội tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2019 – 2020. Đề thi chọn đội tuyển học sinh giỏi Toán năm 2020 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán năm 2020 sở GD&ĐT Cao Bằng : + Cho tam giác ABC nội tiếp đường tròn (O) có trung điểm các cạnh AC, AB lần lượt là M và N. Đường thẳng đi qua A lần lượt vuông góc với AC, AB cắt đường thẳng BC tại X và Y. Gọi XM giao AB tại P, YN giao AC tại Q. Chứng minh rằng O, P, Q thẳng hàng. [ads] + Chứng minh rằng trong 5 số nguyên dương bất kì, luôn tồn tại 3 số có tổng chia hết cho 3. + Chứng minh rằng trong 13 ước nguyên dương của 6^2019, luôn tồn tại 3 số có tích là lập phương của một số tự nhiên.
Đề thi chọn HSG Toán 12 năm 2019 - 2020 trường chuyên Lê Quý Đôn - Quảng Trị
Vừa qua, trường THPT chuyên Lê Quý Đôn, trực thuộc sở Giáo dục và Đào tạo tỉnh Quảng Trị đã tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Toán 12 cấp tỉnh năm học 2019 – 2020. Đề thi chọn HSG Toán 12 năm 2019 – 2020 trường chuyên Lê Quý Đôn – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có hướng dẫn giải. Trích dẫn đề thi chọn HSG Toán 12 năm 2019 – 2020 trường chuyên Lê Quý Đôn – Quảng Trị : + Từ các chữ số 0, 3, 4, 5, 6, 7, 8, 9 lập được bao nhiêu số chẵn, có ba chữ số khác nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD và các điểm M, N thỏa mãn: MA + 2MC = 0, 2NA + ND = 0. a) Chứng minh tam giác BMN vuông cân. b) Tìm tọa độ điểm A, biết N(2;2), đường thẳng BM có phương trình x – 2y – 3 = 0 và điểm A có hoành độ nhỏ hơn 2. + Cho hình chóp S.ABC có SA = SB = SC và đáy là tam giác vuông cân với cạnh huyền AB = a√2. Mặt bên (SBC) hợp với mặt đáy một góc p sao cho cosp= 1/√13. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng AB và SC.