Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi giao lưu học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Tìm đa thức f(x) biết rằng f(x) chia cho x + 2 dư 10, chia cho x – 2 dư 22, chia cho x2 – 4 được thương là x + 3 và còn dư. + Cho ∆ABC vuông tại A, đường cao AH. Tia phân giác của HAB cắt BC tại D. Kẻ DK vuông góc AB (K thuộc AB). Chứng minh: a/ AH = AK b/ ∆ACD cân. + Cho 0 A 75. Điểm D trên cạnh BC sao cho các tam giác ABD và ACD là các tam giác cân. Tính số đo của B, C.
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thái Bình, tỉnh Thái Bình; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Thái Bình : + Cho tam giác ABC vuông tại B có AB = BC. Trên cạnh BC lấy điểm M khác B và C, tia phân giác của góc BAM cắt BC ở D. Đường thẳng qua D vuông góc với AM tại E cắt đường thẳng qua C vuông góc với BC tại N. a) Chứng minh rằng AB = AE. b) Tính DAN. c) Đặt AB = a. Chứng minh rằng chu vi tam giác DCN bằng 2a. + Cho tam giác ABC có diện tích bằng 1, M là điểm tùy ý trong trong tam giác. Chứng minh rằng MA.BC MB.AC MC.AB 4.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Kim Sơn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Kim Sơn, tỉnh Ninh Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Kim Sơn – Ninh Bình : + Viết ngẫu nhiên một số tự nhiên có hai chữ số lớn hơn 50. Tìm số phần tử của tập hợp T gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra. Tính xác suất của biến cố “Số tự nhiên được viết ra là tổng của hai số tự nhiên lẻ liên tiếp”. + Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Gọi I là một điểm trên đoạn thẳng AC (I khác A và C); K là một điểm trên đoạn thẳng EB (K khác E và B) sao cho AI = EK. a) Chứng minh AC = EB và ABE = 90°. b) Chứng minh điểm M là trung điểm của đoạn thẳng IK. c) Từ điểm B và điểm C kẻ các đường thẳng BP và CQ lần lượt vuông góc với đường thẳng AE (P, Q thuộc AE). Chứng minh AP + AQ = BC. + Một chiếc xe tải chở hàng, thùng xe có dạng hình hộp chữ nhật. Thùng xe có chiều dài 9m, chiều rộng bằng chiều cao và cùng bằng 2m (các kích thước được đo trong lòng của thùng xe). a) Hãy tính thể tích của thùng xe. b) Người ta muốn dùng chiếc xe này để chờ các kiện hàng có dạng hình lập phương với độ dài cạnh là 5dm. Hỏi xe chở được nhiều nhất bao nhiêu kiện hàng?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85 (tuổi mỗi người là một số nguyên dương). Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia. + Cho tam giác ABC vuông cân tại A. Giả sử D là điểm nằm bên trong tam giác sao cho tam giác ABD cân và 0 ADB 150. Trên nửa mặt phẳng không chứa D có bờ là đường thẳng AC lấy điểm E sao cho tam giác ACE là tam giác đều. Chứng minh ba điểm B, D, E thẳng hàng. + Một người gửi tiết kiệm vào ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kì hạn một năm lĩnh lãi mỗi quí (3 tháng). Theo qui định nếu đến hạn mà không đến lĩnh lãi thì số đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh quí thứ nhất, các quí còn lại vẫn đến lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau một năm người đó sẽ nhận được là bao nhiêu?