Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương

Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương: Làm quen với các câu hỏi và bài tập trong đề thi Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Bình Dương: Làm quen với các câu hỏi và bài tập trong đề thi Ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021 – 2022. Đề thi tuyển sinh lớp 10 môn Toán của sở GD&ĐT Bình Dương bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút và đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương: + Bài toán 1: Giải hệ phương trình: 3x + 2y = 10, 2x - y = m (với m là tham số). Yêu cầu: Tìm nghiệm của hệ phương trình khi m = 9 và tìm tất cả các giá trị của m để hệ phương trình có nghiệm. + Bài toán 2: Vẽ đồ thị của Parabol y = x^2 và đường thẳng y = 5x + 6. Yêu cầu: Tìm tọa độ các giao điểm của Parabol và đường thẳng bằng phép tính, sau đó viết phương trình của đường thẳng song song và cắt Parabol tại hai điểm phân biệt có hoành độ lần lượt là x_1 và x_2 sao cho x_1 + x_2 = 24. + Bài toán 3: Một khu vườn hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Người ta làm một lối đi xung quanh vườn rộng 1,5m. Tính kích thước của vườn, biết rằng diện tích đất còn lại trong vườn để trồng cây là 24329 m2. Đề thi tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương không chỉ giúp học sinh làm quen với cấu trúc và loại câu hỏi trong đề thi mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề và suy luận logic. Chúc các em học sinh đạt kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Tuyên Quang; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Tuyên Quang : + Khẳng định nào dưới đây sai? A. Đường kính vuông góc với một dây thì hai đầu mút của dây đó đối xứng với nhau qua đường kính đó. B. Đường kính vuông góc với một dây thì đi qua trung điểm của dây đó. C. Đường kính đi qua trung điểm của một dây thì luôn vuông góc với dây đó. D. Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây đó. + Trên nửa đường tròn O đường kính AB lấy điểm C sao cho AC BC C A C B. Gọi D là trung điểm của đoạn thẳng OA. Đường thẳng qua D và vuông góc với AB cắt AC tại E. Chứng minh rằng: a) Tứ giác BCED nội tiếp được. b) 2 4 AB. + Cho hai đường tròn 1 2 1 2 O O O O 8cm và 3cm với 5cm. Khẳng định nào dưới đây đúng? A. 1 2 O O đựng. B. Hai đường tròn cắt nhau. C. Hai đường tròn tiếp xúc ngoài. D. Hai đường tròn tiếp xúc trong.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Cho phương trình 2 x m x m 2 3 0 (x là ẩn số và m là tham số). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x x sao cho biểu thức 2 1 2 1 2 A x x x x 2 3 đạt giá trị lớn nhất. + Cho đường tròn O đường kính AB. Gọi H là điểm thuộc đoạn thẳng AO H A H O. Qua H vẽ đường thẳng vuông góc với AB đường thẳng này cắt đường tròn O tại C và D. Hai đường thẳng BC và AD cắt nhau tại M. Gọi N là hình chiếu của M trên đường thẳng AB. a) Chứng minh ACN AMN. b) Chứng minh 2 CH NH OH. c) Tiếp tuyến tại A của đường tròn (O) cắt NC tại E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. + Cho hình vuông ABCD nội tiếp đường tròn O R trên dây cung DC lấy điểm E sao cho DC DE 3 đường thẳng AE cắt cung nhỏ DC tại M. Gọi I là giao điểm của BM và DC, vẽ OH vuông góc với DM tại H. Tính độ dài các đoạn thẳng AE và DI theo R.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho A là một tập con của tập số tự nhiên. Tập A có phần tử nhỏ nhất là 1 phần tử lớn nhất là 100 và mỗi phần tử x thuộc A x 1 luôn biểu diễn được dưới dạng x a b trong đó a b thuộc A a (có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất. Giải thích cách tìm? + Cho tam giác ABC AB AC có ba góc nhọn nội tiếp đường tròn O và có trực tâm H. Gọi D E F lần lượt là chân đường cao kẻ từ A B C của tam giác ABC. Gọi I là trung điểm cạnh BC P là giao điểm của hai đường thẳng EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là K. a) Chứng minh PB PC PE PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là Q. Chứng minh tứ giác BIQF nội tiếp. + Cho ba điểm A B C phân biệt theo thứ tự cùng nằm trên một đường thẳng. Qua điểm B kẻ đường thẳng d vuông góc với đường thẳng AC D là một điềm di động trên đường thẳng d D B. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng d tại điểm E khác D. Gọi P Q lần lượt là hình chiếu vuông góc của điểm B trên các đường thẳng AD và AE. Gọi R là giao điểm của hai đường thẳng BQ và CD S là giao điểm của hai đường thẳng BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di động trên đường thẳng d.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Tìm tất cả các số nguyên tố p và q thỏa mãn 2 2 p 2 1 q. + Ba cầu thủ của một đội bóng trò chuyện với nhau về số áo được in trên áo mỗi người, nội dung như sau: An: Tôi nhận ra rằng các số trên áo của chúng ta đều là số nguyên tố có hai chữ số. Bình: Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi đã trôi qua vào tháng này. Chung: Thật thú vị! Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi sắp tới vào tháng này. An: Và tổng hai số trên áo hai bạn là ngày hôm nay. Hãy xác định số áo của An, Bình và Chung. + Cho biểu thức 2 f x ax bx c (với abc a 0). Đặt 2 ∆ b ac 4. Chứng minh rằng nếu ∆ ≤ 0 thì f x 0 với mọi số thực x.