Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án - Nguyễn Bảo Vương

Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương phân dạng và tuyển tập các bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án, các bài toán được sắp xếp theo từng nội dung trong SGK Giải tích 12 chương 2. BÀI 1 . LŨY THỪA Dạng 1. Thực hiện phép tính, rút gọi biểu thức, lũy thừa. Dạng 2. So sánh các lũy thừa. BÀI 2 . HÀM SỐ LŨY THỪA Dạng 1. Tập xác định của hàm số lũy thừa. Dạng 2. Tính chất hàm số lũy thừa. BÀI 3 . LOGARIT Bảng tóm tắt công thức Mũ-loarrit thường gặp. Dạng 1. Tính giá trị biểu thức chứa logarit. Dạng 2. Các mệnh đề liên quan đến logarit. Dạng 3. Biểu diễn logarit này theo logarit khác. BÀI 4 . HÀM SỐ MŨ – HÀM SỐ LŨY THỪA Dạng 1. Tìm tập xác định của hàm số mũ – hàm số lũy thừa. Dạng 2. Tính đạo hàm các cấp hàm số mũ, hàm số logarit. Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit. Dạng 4. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit hàm nhiều biến. Dạng 5. Sự biến thiên của hàm số mũ – logarit. Dạng 6. Toán cực trị liên quan đến hàm số mũ – logarit. Dạng 7. Đọc đồ thị hàm số mũ – logarit. Dạng 8. Bài toán lãi suất. [ads] BÀI 5 . PHƯƠNG TRÌNH MŨ Dạng 1. Phương trình mũ không chứa tham số. + Bài toán tìm nghiệm phương trình mũ không có điều kiện nghiệm. + Bài toán tính điều kiện của các nghiệm phương trình mũ. + Bài toán biến đổi phương trình mũ. Dạng 2.Phương trình mũ chứa tham số. + Bài toán tìm m để phương trình mũ có nghiệm. + Bài toán tìm m để phương trình mũ có số nghiệm bằng k. + Bài toán tìm m để phương trình mũ có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình mũ có nghiệm thuộc khoảng, đoạn cho trước. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản. + Bài toán bất phương trình mũ có điều kiện nghiệm. Dạng 2. Bất phương trình mũ chứa tham số. + Bài toán tìm m để bất phương trình có vô số nghiệm. + Bài toán tìm m để bất trình có nghiệm thuộc khoảng, đoạn, nữa khoảng cho trước. BÀI 7 . PHƯƠNG TRÌNH LOGARIT Dạng 1. Phương trình logarit không chứa tham số. + Bài toán tìm nghiệm của phương trình logarit (không có điều kiện nghiệm). + Bài toán tìm nghiệm của phương trình logarit có điều kiện nghiệm. Dạng 2. Phương trình logarit chứa tham số. + Bài toán tìm m để phương trình logarit có nghiệm. + Bài toán tìm m để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình logarit có nghiệm thuộc khoảng cho trước. BÀI 8 . BẤT PHƯƠNG TRÌNH LOGARIT Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản (không có điều kiện nghiệm). + Bài toán bất phương trình logarit có điều kiện của nghiệm. Dạng 2. Bất phương trình logarit chứa tham số. + Bài toán tìm m để bất phương trình có nghiệm. Xem thêm : Giải chi tiết các dạng toán lũy thừa, mũ và logarit – Nguyễn Bảo Vương

Nguồn: toanmath.com

Đọc Sách

Bài tập dãy số và cấp số - Trần Sĩ Tùng
Tài liệu gồm 6 trang tổng hợp một số bài tập dãy số và cấp số cộng, cấp số nhân, tài liệu được biên soạn bởi thầy Trần Sĩ Tùng. I. Phương pháp qui nạp toán học Để chứng minh mệnh đề chứa biến A(n) là một mệnh đề đúng với mọi giá trị nguyên dương n, ta thực hiện như sau: · Bước 1: Kiểm tra mệnh đề đúng với n = 1 · Bước 2: Giả thiết mệnh đề đúng với số nguyên dương n = k tuỳ ý (k >= 1), chứng minh rằng mệnh đề đúng với n = k + 1 Chú ý: Nếu phải chứng minh mệnh đề A(n) là đúng với với mọi số nguyên dương n >= p thì: + Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p + Ở bước 2, ta giả thiết mệnh đề đúng với số nguyên dương bất kì n = k >= p và phải chứng minh mệnh đề đúng với n = k + 1 II. Dãy số 1. Dãy số 2. Dãy số tăng, dãy số giảm 3. Dãy số bị chặn [ads] III. Cấp số cộng 1. Định nghĩa 2. Số hạng tổng quát 3. Tính chất các số hạng 4. Tổng n số hạng đầu tiên IV. Cấp số nhân 1. Định nghĩa 2. Số hạng tổng quát 3. Tính chất các số hạng 4. Tổng n số hạng đầu tiên
Bài tập phương pháp quy nạp toán học - Lê Bá Bảo
Tài liệu gồm 10 trang hướng dẫn cách giải và tuyển chọn các bài tập phương pháp quy nạp toán học có lời giải chi tiết. I – Lý thuyết Để chứng minh một mệnh đề đúng với mọi n thuộc N* bằng phương pháp quy nạp toán học ta thực hiện các bước sau: + Bước 1: Kiểm tra mệnh đề đúng với n = 1 + Bước 2: Giả sử mệnh đề đúng với n = k >=1 + Bước 3: Chứng minh mệnh đề đúng với n = k+1 II – Các dạng bài tập + Dạng 1: Chứng minh đẳng thức – bất đẳng thức + Dạng 2: Bài toán chia hết [ads]
30 bài tập cấp số cộng và cấp số nhân nâng cao - Nguyễn Đình Sỹ
Tài liệu gồm 13 trang tuyển chọn 30 bài tập cấp số cộng và cấp số nhân nâng cao do tác giả Nguyễn Định Sĩ biên soạn. Trích một số bài toán trong tài liệu : 1. Số hạng thứ 2 và số hạng thứ 7 của một cấp số cộng có tổng bằng 92, số hạng thứ tư và số hạng thứ 11 có tổng bằng 71 . Tìm 4 số hạng đó ? 2. Người ta trồng 3003 cây theo hình một tam giác như sau: hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây, hàng thứ ba có 3 cây, v.v… Hỏi có bao nhiêu hàng ? 3. Tìm bốn góc của một tứ giác, biết các góc đó lập thành một cấp số nhận và góc cuối bằng 9 lần góc thứ 2 ? [ads] Bạn đọc có thể tham khảo thêm tài liệu Hướng dẫn giải các dạng toán dãy số, cấp số cộng và cấp số nhân – Đặng Việt Đông trong đó tuyển chọn nhiều bài toán về dãy số, cấp số cộng và cấp số nhân từ cơ bản đến nâng cao với đầy đủ các dạng toán, có lời giải chi tiết.
Bài tập VD - VDC giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục
Tài liệu gồm 42 trang, được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tuyển tập 61 bài tập VD – VDC giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục có đáp án và lời giải chi tiết, giúp học sinh lớp 11 rèn luyện khi học chương trình Đại số và Giải tích 11 (Toán 11) chương 4. Dạng toán 1. Giới hạn hữu hạn của dãy số. Dạng toán 2. Tổng của cấp số nhận lùi vô hạn. Dạng toán 3. Giới hạn vô cực của dãy số. Dạng toán 4. Giới hạn hữu hạn của hàm số tại một điểm. Dạng toán 5. Giới hạn hữu hạn của hàm số tại vô cực. Dạng toán 6. Giới hạn vô cực của hàm số. Dạng toán 7. Xét tính liên tục của hàm số tại một điểm. Dạng toán 8. Xét tính liên tục của hàm số trên tập xác định. Dạng toán 9. Ứng dụng tính liên tục của hàm số trong giải phương trình.