Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hà Nội

Sáng Chủ Nhật ngày 13 tháng 06 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết, lời giải được trình bày bởi các thành viên CLB Toán Lim: Nguyễn Duy Khương – Hà Huy Khôi – Đoàn Phương Khang – Bùi Hồng Hạnh – Nguyễn Đức Toàn – Nguyễn Khang. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cáhc lập phương trình hoặc hệ phương trình: Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày nhất định. Thực tế, mỗi ngày tổ đội đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với số bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ đội sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đội đó làm xong mỗi ngày là bằng nhau). + Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy π = 3,14). + Cho tam giác ABC vuông tại A. Từ điểm B kẻ tiếp tuyến BM với đường tròn (C;CA) (M là tiếp điểm, M nằm khác phía với A đối với BC). 1) Chứng minh rằng 4 điểm A,C,M,B cùng nằm trên 1 đường tròn. 2) Lấy điểm N trên đoạn AB. Lấy điểm P trên tia đối của tia MB sao cho MP = AN. Chứng minh tam giác CPN cân và AM đi qua trung điểm của NP.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Nam Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A đường cao AH. đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C) 1) Chứng minh AM.AB = AN.AC và AN.AC = MN^2 2) Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Chứng minh IO vuông góc với đường thẳng MN 3) Chứng minh 4(EN^2 + FM^2) = BC^2 + 6AH^2 [ads] + Cho tam giác ABC vuông tại A đường cao AH biết BH = 4cm và CH = 16cm độ dài đường cao AH bằng? + Cho hình nón có bán kính bằng 3 cm chiều cao bằng 4cm diện tích xung quanh của hình nón đã cho bằng?
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, do cải tiến kỹ thuật nên tổ I vượt mức 10% vả tổ II vượt mức 12% so với tháng đầu, vì vậy, hai tổ đã sản xuất được 1000 chi tiết máy. Hỏi trong tháng đầu mỗi tổ sản xuất được bao nhiêu chi tiết máy? + Cho đường tròn tâm O, bán kính R. Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Qua A, kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB [ads] 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn 2) Chứng minh: MN^2 = NF.NA và MN = NH 3) Chứng minh: HB^2/HF^2 – EF/MF = 1
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT chuyên Lê Quý Đôn - Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 450 km. Một ô tô đi từ A đến B với vận không đổi trong một thời gian dự định. Khi đi, ô tô tăng vận tốc hơn dự kiến 5 km/h nên đã đến B sớm hơn 1 giờ so với thời gian dự định. Tính vận tốc dự kiến ban đầu của ô tô. + Cho đường tròn (O), dây BC không phải là đường kính. Các tiếp tuyến của (O) tại B và C cắt nhau ở A. Lấy điểm M trên cung nhỏ BC (M khác B và C), gọi I,H,K lần lượt là chân đường vuông góc hạ từ M xuống BC,CA và AB. Chứng minh: [ads] a) Các tứ giác BKMI; CHMI nội tiếp b) MI^2 = MK.MH c) BM cắt IK tại D, CM cắt IH tại E. Chứng minh DE//BC
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT TP. HCM
Đề thi tuyển sinh lớp 10 THPT năm 2017 môn Toán sở GD và ĐT thành phố Hồ Chí Minh gồm 5 câu hỏi tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một miếng đất hình chữ nhật có chu vi 100 m. Tính chiều dài và chiều rộng của miếng đất, biết rằng 5 lần chiều rộng hơn 2 lần chiều dài 40 m. + Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng AB dài 762 m , góc A bằng 6 độ, góc B bằng 4 độ [ads] a) Tính chiều cao h của con dốc b) Hỏi bạn an đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là 4 km/h và tốc độ trung bình xuống dốc là 19km/h