Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 2021 trường chuyên Hà Nội Amsterdam

Thứ Tư ngày 11 tháng 11 năm 2020, trường THPT chuyên Hà Nội – Amsterdam, quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng học kỳ 1 môn Toán lớp 9 năm học 2020 – 2021. Đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng HK1 Toán 9 năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Một chiếc thang dài 7m dựa vào bức tường thẳng đứng, tạo với mặt đất một góc 50°. Nếu đẩy chân của chiếc thang đó gần về phía tường đến khi thang tạo với mặt đất góc 65° (xem hình vẽ), hỏi đầu thang ở trên tường đã dịch chuyển lên một đoạn là bao nhiêu? (kết quả các phép tính lấy hai chữ số sau dấu phẩy). + Cho tam giác ABC có BAC > 90°, đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh AB, BC và CA lần lượt tại P, Q và R. Gọi M, N theo thứ tự là trung điểm của các cạnh CA, AB. Các đường thẳng MN, PQ cắt nhau ở D. a) Cho biết độ dài các cạnh AB, BC và CA của tam giác tương ứng bằng 4 cm, 7 cm và 5 cm, tính độ dài của đoạn AP theo cm. b) Chứng minh các tam giác NDP và MCD là các tam giác cân. c) Chứng minh rằng các điểm D, I, C thẳng hàng. d) Gọi H là chân đường vuông góc kẻ từ Q đến PR. Chứng minh PHB = CHR. + Cho a, b là các số thực trái dấu thỏa mãn a^2 >= ab + 2b^2. Tìm giá trị lớn nhất của biểu thức P = (a^2 + 2b^2)/ab.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Bạn Bình mua một quyển từ điển và một món đồ chơi với tổng giá tiền theo niêm yết là 750 nghìn đồng. Vì Bình mua đúng dịp cửa hàng có chương trình khuyến mãi nên khi thanh toán giá quyển từ điển được giảm 20%, giá món đồ chơi được giảm 10%. Do đó Bình chỉ phải trả 630 nghìn đồng. Hỏi Bình mua mỗi thứ giá bao nhiêu tiền. + Một bồn nước inox có dạng hình trụ chiều cao 2m, bán kính đáy 0,3m. Hỏi bồn nước này đựng đầy được bao nhiêu lít nước (lấy pi = 3,14). + Cho đường tròn (O) đường kính AB. C là một điểm thuộc đường tròn sao cho AC < BC. Lấy điểm I thuộc BC (I khác B và C). AI cắt đường tròn tại điểm thứ hai là D. Gọi H là hình chiếu của I trên AB. a) Chứng minh tứ giác BDIH nội tiếp; b) Đường thẳng CH cắt đường tròn tại điểm thứ hai là K. Chứng minh rằng BI.BC = BH.BA và IH // DK; c) Kẻ KM vuông góc với AC tại M, KN vuông góc với BC tại N. Chứng minh các đường thẳng AB, DK và MN đồng quy.
Đề khảo sát Toán 9 lần 3 năm 2021 - 2022 trường THCS Thanh Quan - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 lần 3 năm học 2021 – 2022 trường THCS Thanh Quan, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2021 – 2022 trường THCS Thanh Quan – Hà Nội : + Giải bài toán bằng cách lập phương trình và hệ phương trình: Hai xí nghiệp cùng may một loại áo. Nếu xí nghiệp thứ nhất may trong 5 ngày và xí nghiệp thứ hai may trong 3 ngày thì cả hai xí nghiệp may được 2620 chiếc áo. Biết rằng trong một ngày xí nghiệp thứ hai may nhiều hơn xí nghiệp thứ nhất 20 chiếc áo. Hỏi mỗi xí nghiệp trong một ngày may được bao nhiêu chiếc áo? + Bạn Nam dùng giấy bìa để làm một chiếc mũ sinh nhật hình nón có chiều cao 16cm, đường kính đáy mũ 24 cm. Tính diện tích giấy bìa vừa đủ để bạn hoàn thành chiếc mũ đó? (Coi phần bìa dành cho các mép nối là không đáng kể). + Trong mặt phẳng toạ độ Oxy cho parabol 2 P y x và đường thẳng 1 d y mx a) Tìm m để parabol (P) và đường thẳng (d) cùng đi qua điểm có hoành độ x = 2 b) Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi m. Gọi 1 2 x x là các hoành độ giao điểm của (d) và (P) tìm m để 2 2 1 x x 1 3.
Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Ngô Sĩ Liên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2022.
Đề khảo sát chất lượng Toán 9 năm 2022 trường THCS Ngọc Thụy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm 2022 trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2022 trường THCS Ngọc Thụy – Hà Nội : + Cho hai biểu thức: A và B. 1) Tính giá trị biểu thức A khi x = 1. 2) Rút gọn biểu thức B. 3) Cho biết P = A.B. Tìm x để 2(x + 1).P – x2 = 7. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hội trường của trường THCS Ngọc Thụy có đúng 250 ghế được chia đều vào các dãy. Nhằm giãn cách xã hội, trong đợt phòng chống dịch COVID-19 để mỗi dãy bớt đi 5 ghế mà số ghế trong hội trường không đổi thì nhà trường phải kê thêm 25 dãy như thế nữa. Hỏi ban đầu, số ghế trong hội trường được chia thành bao nhiêu dãy? + Một chiếc xô có dạng hình nón cụt có chiều cao là 24cm, đường kính đáy lớn là 20cm, đường kính đáy nhỏ là 12cm. Hỏi chiếc xô có thể chứa được nhiều nhất bao nhiêu lít nước?