Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nghiệm của đa thức một biến

Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nghiệm của đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Nắm vững định nghĩa nghiệm của đa thức một biến. + Nhận biết được số nghiệm của đa thức một biến không vượt quá số bậc của đa thức. Kĩ năng: + Kiểm tra được một số có là nghiệm của đa thức một biến hay không. + Tìm được nghiệm của một số đa thức một biến dạng đơn giản. + Biết cách chứng minh đa thức vô nghiệm. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. + Bài toán 1. Tìm nghiệm của đa thức. + Bài toán 2. Chứng minh đa thức không có nghiệm. Dạng 3. Tìm đa thức một biến có nghiệm cho trước.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn Toán
Nội dung Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn ToánPhần I. Tóm tắt lí thuyếtPhần II. Các dạng bàiPhần III. Bài tập tự luyện Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn Toán Để hiểu rõ về chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác trong chương trình môn Toán lớp 7, bạn cần nắm vững các kiến thức sau. Phần I. Tóm tắt lí thuyết Phần này cung cấp tóm tắt về cách viết kí hiệu về sự bằng nhau của hai tam giác và cách suy ra các cạnh và góc bằng nhau từ kí hiệu tam giác bằng nhau. Phần II. Các dạng bài - Dạng 1: Bài tập lí thuyết giúp bạn viết kí hiệu tam giác bằng nhau và suy ra các cạnh và góc bằng nhau. - Dạng 2: Tính số đo góc, độ dài cạnh của tam giác khi biết hai tam giác bằng nhau và một số điều kiện. - Dạng 3: Chứng minh hai tam giác bằng nhau theo trường hợp bằng nhau thứ nhất và các bài toán liên quan. Phần III. Bài tập tự luyện Phần này cung cấp các bài tập tự luyện để giúp bạn rèn luyện kỹ năng giải các bài toán liên quan đến hai tam giác bằng nhau. Hãy nắm vững các kiến thức về tia phân giác, đường cao của tam giác, đường trung trực của đoạn thẳng để giải các bài toán một cách chính xác.
Chuyên đề tổng các góc trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề tổng các góc trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tổng các góc trong một tam giác lớp 7 môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIPHẦN III: BÀI TẬP TỰ LUYỆN Chuyên đề tổng các góc trong một tam giác lớp 7 môn Toán Tài liệu này bao gồm 22 trang, cung cấp tóm tắt về lí thuyết và hướng dẫn giải các dạng bài tập liên quan đến việc tính toán các góc trong một tam giác trong chương trình môn Toán lớp 7. PHẦN I: TÓM TẮT LÍ THUYẾT Phần này cung cấp các kiến thức cơ bản về tính chất của các góc trong tam giác, bao gồm: Tính số đo góc của một tam giác và lập các đẳng thức liên quan Tính chất của góc trong tam giác vuông Tính chất của góc ngoài trong tam giác PHẦN II: CÁC DẠNG BÀI Phần này tập trung vào việc giải các dạng bài tập thường gặp liên quan đến tổng các góc trong tam giác, bao gồm: Dạng 1: Tính số đo góc của một tam giác thông qua việc lập các đẳng thức và tính toán Dạng 2: Bài toán chứng minh sử dụng các tính chất đã học trước đó PHẦN III: BÀI TẬP TỰ LUYỆN Phần này cung cấp các bài tập tự luyện để học sinh có thể rèn luyện và kiểm tra kiến thức của mình sau khi học xong chuyên đề này. Đây là tài liệu hữu ích giúp học sinh lớp 7 nắm vững và hiểu sâu về các kiến thức liên quan đến góc trong tam giác.
Chuyên đề định lí và chứng minh định lí lớp 7 môn Toán
Nội dung Chuyên đề định lí và chứng minh định lí lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên Đề Định Lí và Chứng Minh Định Lí Lớp 7 Môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIPHẦN III: BÀI TẬP TỰ LUYỆN Chuyên Đề Định Lí và Chứng Minh Định Lí Lớp 7 Môn Toán Tài liệu này bao gồm 19 trang, tóm tắt về lí thuyết và hướng dẫn cách giải các dạng bài tập trong chuyên đề định lí và chứng minh định lí trong chương trình môn Toán lớp 7. PHẦN I: TÓM TẮT LÍ THUYẾT 1. Định lí: Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết, thường được phát biểu dưới dạng "Nếu... thì...". Giả thiết của định lí là phần giữa từ "nếu" và từ "thì", kết luận là phần sau từ "thì". 2. Chứng minh định lí: Chứng minh một định lí là dùng lập luận từ giả thiết và các khẳng định đúng để suy ra kết luận của định lí. PHẦN II: CÁC DẠNG BÀI Dạng 1: Xác định giả thiết và kết luận của định lí. Mỗi định lí được phát biểu dưới dạng "Nếu... thì...". Giả thiết là phần giữa từ "nếu" và từ "thì", kết luận là phần sau từ "thì". Dạng 2: Chứng minh định lí bằng cách dùng lập luận từ giả thiết và các khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN III: BÀI TẬP TỰ LUYỆN Phần này chứa các bài tập tự luyện để học sinh ôn tập và rèn luyện kỹ năng trong chuyên đề định lí và chứng minh định lí.Đọc kỹ lý thuyết, làm các bài tập và kiểm tra lại đáp số sẽ giúp học sinh hiểu và áp dụng chính xác kiến thức.
Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song lớp 7 môn Toán
Nội dung Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Chuyên đề này bao gồm 40 trang với tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập về tính chất của hai đường thẳng song song trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Nơi tóm tắt những kiến thức cơ bản về tính chất của hai đường thẳng song song. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Tính số đo góc. Đây là phần bài tập giúp học sinh áp dụng tính chất hai đường thẳng song song để tính số đo của các góc. Dạng 2: Chứng minh hai đường thẳng song song, vuông góc. Bao gồm các phương pháp chứng minh hai đường thẳng song song và hai đường thẳng vuông góc dựa trên các dấu hiệu nhận biết và tiên đề Euclid. PHẦN III. BÀI TẬP TƯƠNG TỰ LUYỆN: Phần này cung cấp các bài tập giúp học sinh ôn tập và luyện tập các kiến thức về tính chất của hai đường thẳng song song. Bằng cách tham gia vào chuyên đề này, học sinh sẽ có cơ hội hiểu rõ hơn về tính chất của hai đường thẳng song song và cách áp dụng chúng vào việc giải các bài tập.