Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng Toán 9 lần 3 năm 2021 - 2022 phòng GDĐT Chương Mỹ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 lần 3 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn đề kiểm tra chất lượng Toán 9 lần 3 năm 2021 – 2022 phòng GD&ĐT Chương Mỹ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Bác An đến siêu thị mua một cái quạt và một nồi cơm điện với tổng số tiền theo giá niêm yết là 1250 nghìn đồng. Tuy nhiên, thực tế khi trả tiền, siêu thị khuyến mãi để tri ân khách hàng nên giá của quạt và nồi cơm đã lần lượt giảm bớt 15% và 10% so với giá niêm yết. Do đó, Bác An đã phải trả ít hơn 150 nghìn đồng so với giá niêm yết khi mua hai sản phẩm trên. Hỏi số tiền niêm yết của chiếc quạt và nồi cơm điện khi chưa được giảm giá là bao nhiêu? + Một que kem ốc quế gồm hai phần: phần kem có dạng hình cầu, phần ốc quế có dạng hình nón. Biết hình cầu và hình nón có cùng bán kính 2,5cm, chiều cao hình nón gấp ba lần bán kính hình cầu. Tính thể tích của que kem? (Lấy pi = 3,14 và kết quả làm tròn đến hàng đơn vị). + Cho Parabol (P): y = x2 và đường thẳng (d): y = 4x – m + 1. a) Tìm m sao cho đường thẳng (d) tiếp xúc với parabol (P)? Tìm tọa độ tiếp điểm? b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ thỏa mãn.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát lần 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Đăng Đạo - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng lần 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Đăng Đạo, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 30 tháng 11 năm 2022. Trích dẫn Đề khảo sát lần 1 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Đăng Đạo – Bắc Ninh : + Cho các khẳng định sau: (1) Qua ba điểm phân biệt chỉ vẽ được một đường tròn duy nhất. (2) Có vô số đường tròn đi qua hai điểm phân biệt. (3) Tâm đường tròn ngoại tiếp tam giác nằm ở trung điểm của cạnh lớn nhất. (4) Trong một đường tròn, đường kính đi qua trung điểm của dây thì vuông góc với dây ấy. Số khẳng định đúng? + Cho hàm số y = (m − 1)x + 2 − m (với m là tham số). a) Vẽ đồ thị hàm số khi m = 3. b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 5. c) Chứng minh rằng khoảng cách từ gốc tọa độ O đến đồ thị hàm số không vượt quá 2. + Trên đường tròn (O) đường kính AB, lấy điểm E bất kỳ (khác A và B). Gọi F là điểm đối xứng với E qua O. Vẽ đường thẳng vuông góc với AB tại B, đường thẳng này cắt các tia AE, AF lần lượt tại M và N. a) Chứng minh AE.AM = AF.AN. b) Tìm vị trí của E trên đường tròn (O) để đoạn thẳng MN có độ dài nhỏ nhất.
Đề khảo sát chất lượng Toán 9 tháng 11 năm 2022 trường THCS Suối Hoa - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 11 năm học 2022 – 2023 trường THCS Suối Hoa, tỉnh Bắc Ninh; đề thi được biên soạn theo cấu trúc 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 90 phút. Trích dẫn Đề khảo sát chất lượng Toán 9 tháng 11 năm 2022 trường THCS Suối Hoa – Bắc Ninh : + Khẳng định nào sau đây là SAI? A. Trong các dây của một đường tròn, dây lớn nhất là đường kính. B. Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. C. Trong các dây của một đường tròn, dây lớn nhất là bán kính. D. Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Cho hàm số bậc nhất y = (m + 1)x – 3. a) Với giá trị nào của m để thị hàm số đi qua điểm A(1;−1). b) Vẽ đồ thị của hàm số với giá trị vừa tìm được của m. + Cho tam giác ABC có AB = 5cm; BC = 12cm; AC = 13cm. a) Tam giác ABC là tam giác gì? Tính số đo góc A. b) Lấy điểm D đối xứng với điểm B qua đường thẳng AC, BD cắt AC tại E. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn. c) Gọi M, N lần lượt là hình chiếu vuông góc của E trên AB và BC. Chứng minh BD2 = 2BM.BA + 2BN.BC.
Đề kiểm tra Toán 9 tháng 12 năm 2022 trường THCS Thị trấn Hồ - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 12 năm học 2022 – 2023 trường THCS Thị trấn Hồ, tỉnh Bắc Ninh; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm (08 câu) + 80% tự luận (05 câu), thời gian học sinh làm bài thi là 60 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 12 năm 2022. Trích dẫn Đề kiểm tra Toán 9 tháng 12 năm 2022 trường THCS Thị trấn Hồ – Bắc Ninh : + Tâm của đường tròn ngoại tiếp tam giác là giao điểm của các đường: A. trung tuyến. B. phân giác. C. trung trực. D. Cao. + Cho hàm số bậc nhất y = (2m – 3)x + n (d). a) Tìm giá trị của m để hàm số đồng biến. b) Xác định hàm số, biết đồ thị (d) đi qua điểm (2;–5) và song song với đường thẳng (d1): y = -2x – 2. + Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm; AC = 4cm. a) Tính AH, BH, CH. b) Chứng minh CB là tiếp tuyến của đường tròn (A;AH). c) Kẻ tiếp tuyến BI và CK với đường tròn (A;AH) (I, K là tiếp điểm). Chứng minh BC = BI + CK và ba điểm I, A, K thẳng hàng.
Đề khảo sát Toán 9 lần 3 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 3 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 01 tháng 12 năm 2022. Trích dẫn Đề khảo sát Toán 9 lần 3 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội: + Cho hàm số bậc nhất y = (3 − m)x + m − 1 với m là tham số và m khác 3. a) Tìm m để hàm số trên là hàm số đồng biến. b) Vẽ đồ thị hàm số tại m = 5. c) Tính khoảng cách từ gốc toạ độ đến đồ thị vừa vẽ ở câu b, đơn vị trên các trục là xentimet. + Đài quan sát ở Toronto, Ontario, Canada cao 533m. Ở một thời điểm trong ngày, mặt trời chiếu tạo thành bóng dài 1100m. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu ? (kết quả làm tròn đến phút). + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K lần lượt là trung điểm của BC, AH. a) Chứng minh bốn điểm B, C, E, F cùng thuộc một đường tròn. b) Chứng minh: AB.AF = AC.AE c) Gọi là trung điểm của BC. Vẽ đường tròn đường kính AH. Chứng minh IE là tiếp tuyến của đường tròn đường kính AH. d) Tìm điều kiện của tam giác ABC để IE = EF.