Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 11 môn Toán lần 3 năm 2018 – 2019 trường Lý Nhân Tông – Bắc Ninh

Nội dung Đề khảo sát lớp 11 môn Toán lần 3 năm 2018 – 2019 trường Lý Nhân Tông – Bắc Ninh Bản PDF Nhằm kiểm tra đánh giá thường xuyên chất lượng học tập môn Toán của học sinh khối 11, vừa qua, trường THPT Lý Nhân Tông – Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng Toán lớp 11 năm học 2018 – 2019 lần thứ 3. Đề khảo sát Toán lớp 11 lần 3 năm 2018 – 2019 trường Lý Nhân Tông – Bắc Ninh có mã đề 293 gồm 05 trang, đề được biên soạn dưới dạng trắc nghiệm 04 đáp án A, B, C, D với 50 câu, học sinh có 90 phút để hoàn thành bài thi khảo sát Toán lớp 11, đề thi có đáp án. [ads] Trích dẫn đề khảo sát Toán lớp 11 lần 3 năm 2018 – 2019 trường Lý Nhân Tông – Bắc Ninh : + Trong một cấp số nhân gồm các số hạng dương, hiệu số giữa số hạng thứ 5 và thứ 4 là 576 và hiệu số giữa số hạng thứ 2 và số hạng đầu là 9. Tìm tổng 5 số hạng đầu tiên của cấp số nhân này? + An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có bốn con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường? + Cho bốn số a, b, c, d theo thứ tự đó tạo thành cấp số nhân với công bội khác 1. Biết tổng ba số hạng đầu bằng 148/9, đồng thời theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Tính giá trị biểu thức T = a – b + c – d. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL học sinh giỏi Toán 11 lần 1 năm 2022 - 2023 trường THPT Quế Võ 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng học sinh giỏi môn Toán 11 lần 1 năm học 2022 – 2023 trường THPT Quế Võ số 1, tỉnh Bắc Ninh; đề thi gồm 01 trang với 06 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Trích dẫn Đề KSCL học sinh giỏi Toán 11 lần 1 năm 2022 – 2023 trường THPT Quế Võ 1 – Bắc Ninh : + Gọi X là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên từ X ra một số. Tính xác suất để chọn được số không có hai chữ số chẵn đứng liền kề. + Trong mặt phẳng Oxy cho đường tròn 13 2 2 C1 x y, đường tròn 6 25 2 2 C2 x y 1. Tìm giao điểm của hai đường tròn C1 và C2. 2. Gọi giao điểm có tung độ dương của C1 và C2 là A, viết phương trình đường thẳng đi qua A cắt C1 và C2 theo hai dây cung có độ dài bằng nhau. + Cho hình thoi ABCD tâm O có 0 B 60. Điểm S nằm ngoài mặt phẳng (ABCD) thỏa mãn SAB SAC. Cho M, N lần lượt là trung điểm của SA và CD. 1. Chứng minh rằng: MN SBC. 2. Dựng thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng qua MN và song song với SC. Thiết diện là hình gì? 3. Tính tỉ số diện tích của thiết diện và tam giác SBC.
Đề KSCL đội tuyển HSG Toán 11 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 11 nằm trong đội tuyển học sinh giỏi Toán 11 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán 11 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 08 bài toán, bao quát toàn diện các kiến thức Toán 11 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề KSCL đội tuyển HSG Toán 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Từ 8 chữ số trên lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AD = 2a, AB = BC = CD = a, góc BAD = 60 độ, SA vuông góc với đáy và SA = a√3. M và I là hai điểm thỏa mãn 3MI + MS = 0, 4IS + 3ID = 0. Mặt phẳng (AMI) cắt SC tại N. a) Chứng minh đường thẳng SD vuông góc với mặt phẳng (AMI). b) Chứng minh góc ANI = 90 độ, góc AMI = 90 độ. c) Tính diện tích của thiết diện tạo bởi mặt phẳng (AMI) và hình chóp S.ABCD. + Cho tam giác ABC có BC = a, AB = c, AC = b. Biết góc BAC = 90 độ và a, b√2/3, c theo thứ tự tạo thành cấp số nhân. Tính số đo góc B, C.
Đề KSCL đội tuyển HSG Toán 11 năm 2017 - 2018 trường Minh Châu - Hưng Yên
Đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 trường Minh Châu – Hưng Yên gồm 1 trang với 9 bài toán tự luận, thí sinh làm bài trong 120 phút, không kể thời gian phát đề, đề thi có lời giải chi tiết . Các dạng toán trong đề KSCL đội tuyển HSG Toán 11 : + Giải phương trình lượng giác + Hàm số và các bài toán liên quan + Tính giới hạn + Nhị thức Newton + Giải hệ phương trình vô tỉ + Phương pháp tọa độ trong mặt phẳng Oxy + Hình học không gian + Tìm công thức số hạng tổng quát của dãy số
Đề KSCL đội tuyển HSG Toán 11 năm 2017 - 2018 trường THPT Yên Lạc 2 - Vĩnh Phúc
Đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD.