Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 11 cấp trường năm 2017 - 2018 trường Lê Văn Thịnh - Bắc Ninh

Đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 trường Lê Văn Thịnh – Bắc Ninh gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức vào ngày 7/4/2018 nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11 để rèn luyện, bồi dưỡng thêm, hướng đến các kỳ thi học sinh giỏi Toán cấp cao hơn, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 11 cấp trường : + Cho đa giác lồi n cạnh nội tiếp đường tròn, biết số tam giác lập được bằng 4/7 số tứ giác lập được từ n đỉnh của đa giác đó. Tìm hệ số của x^4 trong khai triển (3 + 2x)^n. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD // BC), BC = 2a, AB = AD = DC = a (a > 0). Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc với AC. [ads] a) Chứng minh mặt phẳng (SBC) vuông góc mặt phẳng (ABCD). Tính độ dài đoạn thẳng SD. b) Mặt phẳng (α) đi qua điểm M thuộc đoạn thẳng OD (M khác O và D) và song song với đường thẳng SD và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (α) biết MD = x. Tìm x để diện tích thiết diện lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề HSG cấp trường Toán 11 vòng 2 năm 2022 - 2023 trường THPT Bình Sơn - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 vòng 2 năm học 2022 – 2023 trường THPT Bình Sơn, tỉnh Vĩnh Phúc; đề thi hình thức 110% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề HSG cấp trường Toán 11 vòng 2 năm 2022 – 2023 trường THPT Bình Sơn – Vĩnh Phúc : + Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số. Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A. + Trong mặt phẳng với trục toạ độ Oxy cho hình thang cân ABCD AB CD. Gọi H I lần lượt là hình chiếu vuông góc của B trên các đường thẳng AC CD. Giả sử M N lần lượt là trung điểm của AD HI. Phương trình đường thẳng AB có dạng mx ny 7 0 biết M N 1 2 3 4 và đỉnh B nằm trên đường thẳng x y 9 0 2 cos 5 ABM. Khi đó m n có giá trị thuộc khoảng nào sau đây? + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. A. 29,5triệu đồng. B. 30 triệu đồng. C. 30,5 triệu đồng. D. 29 triệu đồng.
Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 - 2023 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho đa giác đều có 2n đỉnh (n ≥ 2 và n thuộc N). Biết rằng, từ 2n đỉnh của đa giác đều đã cho ta lập được 2520 tam giác vuông. Tìm số cạnh của đa giác đều đã cho. + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;22]. Tính xác suất để ba số viết ra có tổng chia hết cho 3. + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M là trung điểm của BC, điểm N thay đổi thuộc cạnh AC. Biết mặt phẳng (A’BN) luôn cắt AC’ và AM lần lượt tại hai điểm P và Q. Xác định vị trí của N để diện tích của tam giác APQ bằng 2/9 lần diện tích của tam giác AMC’.
Đề học sinh giỏi Toán 11 năm 2022 - 2023 trường THPT Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 trường THPT Phùng Khắc Khoan – Hà Nội : + Tìm phương trình parabol P 2 y ax bx c biết rằng P đi qua ba điểm A B C như hình vẽ. + Trong mọi tam giác ABC, gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB và S là diện tích tam giác ABC. Chứng minh rằng: 2 2 2 cot cot cot 4 a b c A B C S. + Cho phương trình 2 2 4 4 5 4 2 1 x x x x m. Tìm tất cả các giá trị của tham số m để phương trình có bốn nghiệm thực phân biệt.
Đề học sinh giỏi Toán 11 năm 2022 - 2023 trường Nguyễn Đăng Đạo - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh; đề thi gồm 01 trang với 09 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong một bài kiểm tra trắc nghiệm Tiếng Anh có 50 câu. Mỗi câu có 4 phương án trả lời A, B, C, D, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được cộng 0, 2 điểm và mỗi câu trả lời sai bị trừ 0,1 điểm. Bạn Hoa học rất kém môn Tiếng Anh nên chọn ngẫu nhiên cả 5 0 câu trả lời. Tính xác suất để bạn Hoa được 4 điểm bài kiểm tra Tiếng Anh đó. + Cho khai triển 2 01 2 1 2 … n n n x a ax ax ax trong đó n và các hệ số thỏa mãn hệ thức 1 0 … 4096 2 2 n n a a a. Tìm hệ số lớn nhất trong khai triển trên? + Cho hình chóp S ABCD đáy là hình bình hành tâm O, M là một điểm di động trên cạnh SC. a. Khi M là trung điểm của SC chứng minh rằng MO SAB. b. Khi M thay đổi vị trí trên cạnh SC mặt phẳng P qua AM và song song với BD cắt SB SD lần lượt tại H và K. Chứng minh rằng SB SD SC SH SK SM có giá trị không đổi.