Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo Toán thi vào 10 năm 2023 2024 phòng GD ĐT thị xã Phú Thọ

Nội dung Đề tham khảo Toán thi vào 10 năm 2023 2024 phòng GD ĐT thị xã Phú Thọ Bản PDF - Nội dung bài viết Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ Sytu xin gửi đến quý thầy cô và các em học sinh đề tham khảo môn Toán cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 của phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ. Đề thi bao gồm câu hỏi và đáp án dự kiến để giúp các em ôn tập hiệu quả. Trích dẫn đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ: 1. Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là bao nhiêu? 2. Cho hàm số y = ax^2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a > 0 và x > 0 B. Hàm số đồng biến khi a > 0 và x > 0 C. Hàm số đồng biến khi a > 0 và x < 0 D. Hàm số đồng biến khi a > 0 và x = 0. 3. Cho hai điểm A, B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC = BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC, BD lần lượt tại F, G. Gọi I là trung điểm của AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2AB = OD = BC c) Chứng minh EF^2 = EG^2 d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định. Hy vọng đề tham khảo này sẽ giúp các em học sinh ôn tập Toán hiệu quả và tự tin sẵn sàng cho kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cần Thơ gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Để chuẩn bị tham gia hội khỏe phù đổng cấp trường, thầy Thành là giáo viên chủ nhiệm lớp 9A tổ chức cho học sinh trong lớp thi đấu môn bóng bàn ở nội dung đánh đôi nam nữ (một nam kết hợp một nữ). Thầy Thành chọn 1/2 số học sinh nam kết hợp với 5/8 số học sinh nữ của lớp để lập thành các cặp thi đấu. Sau khi đã chọn được số học sinh tham gia thi đấu thì lớp 9A còn lại 16 học sinh làm cổ động viên. Hỏi lớp 9A có tất cả bao nhiêu học sinh? [ads] + Cho tam giác ABC có ba góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB AC , lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng CD và BE a) Chứng minh tứ giác ADHE nội tiếp trong một đường tròn. Xác định tâm I của đường tròn này b) Gọi M là giao điểm của AH và BC. Chứng minh CM.CB = CE.CA c) Chứng minh ID là tiếp tuyến của đường tròn (O) d) Tính theo R diện tích của tam giác ABC, biết góc ABC = 45 độ, góc ACB = 60 độ và BC = 2R
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đăk Lăk
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đăk Lăk gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tính chiều dài và chiều rộng của một hình chữ nhật. Biết rằng nếu tăng cả chiều dài và chiều rộng lên 4cm thì ta được một hình chữ nhật có diện tích tăng thêm 80cm2 so với diện tích của hình chữ nhật ban đầu, còn nếu tăng chiều dài lên 5cm và giảm chiều rộng xuống 2cm thì ta được một hình chữ nhật có diện tích bằng diện tích của hình chữ nhật ban đầu. + Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K [ads] 1) Chứng minh rằng tứ giác OMHQ nội tiếp 2) Chứng minh rằng góc OMH = góc OIP 3) Chứng minh rằng khi điểm M di chuyển trên đường thẳng d thì điểm I luôn cố định 4) Biết OH = R. căn (2), tính IP.IQ
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (vòng 2)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Người ta muốn kẻ số đường chéo của đa giác mà các đường chéo này chia đa giác đã cho thành đúng k miền, mỗi miền là một ngũ giác lồi (hai miền bất kỳ không có điểm trong chung) a. Chứng minh rằng ta có thể thực hiện được với n=2018, k=672 b. Với n=2017, k=672 ta có thể thực hiện được không? Hãy giải thích [ads] + Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức: p(p – 1) = q(q^2 – 1) (*) a) Chứng minh rằng tồn tại số nguyên dương K sao cho: p – 1 = kq; q^2 – 1= kp b) Tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức (*)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID a) Chứng minh rằng góc CBK = góc ABI b) Chứng minh rằng KC vuông góc với KB c) Chứng minh rằng bốn điểm C, K, I, L cùng nằm trên một đường tròn [ads] + Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 … n thành a1, a2, a3 … an mà khi chia các số a1, a1a2, a1a2a3 … a1a2…an cho n ta được các số dư đôi một khác nhau.