Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 202 trang, tuyển tập 8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh lớp 9 tham khảo để ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 sắp tới. CHỦ ĐỀ 1 – RÚT GỌN BIỂU THỨC. Dạng 1. Rút gọn biểu thức 1. Dạng 2. Cho giá trị của x tính giá trị của biểu thức 3. Dạng 3. Đưa về giải phương trình 4. Dạng 4. Đưa về giải bất phương trình 10. Dạng 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 16. Dạng 7. Tìm x để P nhận giá trị là số nguyên 24. Dạng 8. Tìm tham số để phương trình P = m có nghiệm 28. CHỦ ĐỀ 2 – HỆ PHƯƠNG TRÌNH. I. HỆ KHÔNG CHỨA THAM SỐ 33. Dạng 1. Hệ đa thức bậc nhất đối với x và y 33. Dạng 2. Hệ chứa phân thức 34. Dạng 3. Hệ chứa căn 36. Dạng 4. Hệ thức chứa trị tuyệt đối 38. II. HỆ CHỨA THAM SỐ 40. CHỦ ĐỀ 3 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH. I. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH 45. Dạng 1. Toán chuyển động 45. Dạng 2. Toán năng suất 47. Dạng 3. Toán làm chung công việc 48. Dạng 4. Toán về cấu tạo số 51. Dạng 5. Toán phần trăm 52. Dạng 6. Toán có nội dung hình học 53. II. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI 55. Dạng 1. Toán chuyển động 55. Dạng 2. Toán năng suất 59. Dạng 3. Toán làm chung công việc 62. Dạng 4. Toán có nội dung hình học 63. CHỦ ĐỀ 4 – PHƯƠNG TRÌNH BẬC HAI VÀ ĐỊNH LÝ VI-ÉT. I. ĐỊNH LÍ VI-ÉT 68. Dạng 1 các nghiệm thỏa mãn một biểu thức đối xứng 68. Dạng 2. Kết hợp định lý Vi-ét để giải các nghiệm 70. Dạng 3. Giải các nghiệm dựa vào ∆ là bình phương 72. Dạng 4. Tính x1^2 theo x1 và x2^2 theo x2 dựa vào phương trình ax2 + bx + c = 0. II. HỆ QUẢ CỦA ĐỊNH LÝ VI-ÉT 77. Dạng 1. Dạng toán có thêm điều kiện phụ 77. Dạng 2. So sánh nghiệm với số 0 và số a 80. Dạng 3. Đặt ẩn phụ 81. III. SỰ TƯƠNG GIAO CỦA ĐƯỜNG THẲNG VÀ PARABOL 83. Dạng 1. Tìm tham số để đường thẳng tiếp xúc parabol, tìm tọa độ tiếp điểm 83. Dạng 2. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức đối xứng đối với xA và xB 84. Dạng 3. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức không đối xứng đối với xA và xB 87. Dạng 4. Tìm tham số để đường thẳng cắt parapol tại hai điểm phân biệt A, B liên quan đến tung độ A, B 92. Dạng 5. Bài toán liên quan đến độ dài, diện tích 94. CHỦ ĐỀ 5 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. I. PHƯƠNG TRÌNH KHÔNG CHỨA THAM SỐ 102. Dạng 1. Phương trình bậc ba nhẩm được một nghiệm 102. Dạng 2. Phương trình trùng phương 102. Dạng 3. Phương trình dạng 103. Dạng 4. Phương trình dạng 432 ax bx cx bx a 0 103. Dạng 5. Phương trình giải bằng phương pháp đặt ẩn phụ 104. Dạng 6. Phương trình chứa ẩn ở mẫu 104. II. PHƯƠNG TRÌNH CHỨA THAM SỐ 105. Dạng 1. Phương trình bậc ba đua được về dạng tích (x – α)(ax2 + bx + c) = 0 105. Dạng 2. Phương trình trùng phương 106. CHỦ ĐỀ 6 – ĐƯỜNG TRÒN. Dạng 1. Kết nối các góc bằng nhau thông qua tứ giác nội tiếp 110. Dạng 2. Chứng minh ba điểm thẳng hàng 119. Dạng 3. Tiếp tuyến 121. Dạng 4. Chứng minh điểm thuộc đường tròn, chứng minh đường kính 124. Dạng 5. Sử dụng định lý Ta-lét và định lý Ta-lét đảo 128. Dạng 6. Sử dụng tính chất phân giác 135. CHỦ ĐỀ 7 – BẤT ĐẲNG THỨC. I. BẤT ĐẲNG THỨC CÔSI 149. Dạng 1. Dạng tổng sang tích 149. Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp 150. Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Cô-si 151. Dạng 4. Ghép cặp đôi 154. Dạng 5. Dự đoán kết quả rồi tách thích hợp 154. Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kêt quả 156. Dạng 7. Tìm lại điều kiện của ẩn 160. II. BẤT ĐẲNG THỨC BUNHIA 162. III. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 166. Dạng 1. Đưa về bình phương 166. Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một 167. Dạng 3. Tạo ra ab + bc + ca 169. Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tòn tại hai số có tích không âm 170. Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1 172. Dạng 6. Dự đoán kết quả rồi xét hiệu 174. CHỦ ĐỀ 8 – PHƯƠNG TRÌNH VÔ TỶ. I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 181. Dạng 1. Ghép thích hợp đưa về tích 181. Dạng 2. Nhân liên hợp đưa về tích 182. Dạng 3. Dự đoán nghiệm để từ đó tách thích hợp đưa về tích 185. II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 191. Dạng 1. Biến đổi về một biểu thức và đặt một ẩn phụ 191. Dạng 2. Biến đổi về hai biểu thức và đặt hai ẩn phụ rồi đưa về tích 193. Dạng 3. Đặt ẩn phụ kết hợp với ẩn ban đầu đưa về tích 195. Dạng 2. Đánh giá vế này ≥ một số, vế kia ≤ số đó bằng BĐT Cô-si, Bunhia 197. III. PHƯƠNG PHÁP ĐÁNH GIÁ 202.

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải đề tuyển sinh vào môn Toán
Nội dung Phương pháp giải đề tuyển sinh vào môn Toán Bản PDF - Nội dung bài viết Phương pháp giải đề tuyển sinh vào môn Toán Phương pháp giải đề tuyển sinh vào môn Toán Để giúp các em học sinh chuẩn bị thi vào lớp 10 các trường công lập, trường chuyên, chúng tôi đã biên soạn cuốn sách Phương pháp giải đề tuyển sinh 9. Cuốn sách này được tổng hợp từ các đề thi của các trường trong cả nước, được biên soạn rất tâm huyết từ nhóm giáo viên uy tín. Với mong muốn giúp các em tự tin hơn trong kỳ thi tuyển sinh, cuốn sách này sẽ cung cấp cho các em một cách ôn luyện hiệu quả. Tài liệu này bao gồm nhiều đề thi từ các tỉnh thành khác nhau như Bắc Giang, Bình Dương, Bình Định, Bắc Ninh, Quảng Ngãi, Cà Mau, Đồng Nai, Hưng Yên, Hải Dương, Hà Tĩnh, Thừa Thiên Huế, Kiên Giang, Khánh Hòa, Nghệ An... Mỗi đề thi đều được tổ chức theo cấu trúc chính thức của kỳ thi tuyển sinh. Việc học qua các đề thi này sẽ giúp các em nắm vững các dạng bài toán và hiểu rõ mức độ ra đề của từng trường, từ đó có phương pháp ôn thi hiệu quả hơn. Hy vọng rằng cuốn sách Phương pháp giải đề tuyển sinh 9 sẽ là người bạn đồng hành đắc lực cho các em học sinh trong quá trình ôn luyện và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức
Nội dung 108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức Bản PDF - Nội dung bài viết Tuyển tập 108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức Tuyển tập 108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức Tuyển tập sách "108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số" được biên soạn bởi thầy Lương Tuấn Đức, với nội dung đa dạng và phong phú. Sách bao gồm các phần sau: Giải hệ phương trình bằng phương pháp cộng đại số: Quy trình giải hệ phương trình bằng cách thực hiện các phép toán cộng, trừ trên đại số để tìm ra nghiệm. Giải hệ phương trình bằng phương pháp thay thế: Cách tiếp cận giải hệ phương trình bằng việc thay thế giá trị đã biết vào phương trình để tìm ra nghiệm. Giải và biện luận hệ phương trình bậc nhất chứa tham số: Phân tích và đưa ra lời giải cho các hệ phương trình có chứa tham số. Câu hỏi phụ bài toán giải và biện luận: Đặt ra các câu hỏi phụ để khám phá và hiểu sâu hơn về các bài toán trong sách. Bài toán nhiều cách giải: Cung cấp các bài toán có thể được giải theo nhiều cách khác nhau, giúp phát triển tư duy logic và sáng tạo. Tuyển tập sách này không chỉ là nguồn tư liệu hữu ích cho học sinh mà còn là công cụ hỗ trợ giảng dạy hiệu quả cho giáo viên. Với cách trình bày sinh động và dễ hiểu, đây sẽ là nguồn cảm hứng lớn cho những ai yêu toán học.
270 bài toán giải và biện luận phương trình bậc hai một ẩn Lương Tuấn Đức
Nội dung 270 bài toán giải và biện luận phương trình bậc hai một ẩn Lương Tuấn Đức Bản PDF - Nội dung bài viết 270 bài toán giải và biện luận phương trình bậc hai một ẩn 270 bài toán giải và biện luận phương trình bậc hai một ẩn Tài liệu này tập hợp 270 bài toán giải và biện luận về phương trình bậc hai một ẩn, được biên soạn bởi thầy Lương Tuấn Đức để giúp các học sinh chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT và lớp 10 hệ THPT chuyên. Trên 107 trang sách, nội dung chính của tài liệu bao gồm: Giải phương trình bậc hai bằng hằng đẳng thức Giải phương trình bậc hai bằng công thức nghiệm Giải phương trình bậc hai bằng công thức nghiệm thu gọn Giải và biện luận hệ phương trình bậc hai chứa tham số Câu hỏi phụ liên quan đến việc giải và biện luận phương trình Định lý Vi-et thuận và định lý Vi-et đảo Bài toán với nhiều cách giải khác nhau Tài liệu này được thiết kế để giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai một cách linh hoạt và hiệu quả, đồng thời nâng cao kiến thức và khả năng suy luận logic trong giải toán.
101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức
Nội dung 101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức Bản PDF - Nội dung bài viết 101 bài toán Parabol và các vấn đề liên quan 101 bài toán Parabol và các vấn đề liên quan Trên mặt phẳng hàm số và đồ thị, tài liệu này tập trung vào việc giải quyết một loạt các bài toán liên quan đến hàm số bậc hai, đặc biệt là parabol đơn giản (ở dạng y = ax^2) có đỉnh tại gốc tọa độ O. Nội dung bao gồm khảo sát sự thay đổi của hàm số, vẽ đồ thị parabol, xác định vị trí tương đối giữa parabol và đường thẳng, một số bài toán kết hợp yếu tố lượng giác và hình học giải tích. Mục tiêu chính của tài liệu là hỗ trợ quá trình dạy và học, chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT, cung cấp nền tảng cho tư duy hàm số và hình học giải tích ở cấp trung học phổ thông. Nội dung chi tiết của tài liệu bao gồm: Sự biến thiên của hàm số bậc hai Vẽ đồ thị parabol đơn giản Xác định vị trí tương đối giữa đường thẳng và parabol Các bài toán kết hợp yếu tố hình học Bài toán có nhiều cách giải khác nhau Tài liệu không chỉ dừng lại ở mức độ cơ bản mà còn mở rộng kiến thức, khuyến khích sự sáng tạo và đột phá trong các vấn đề toán học và ứng dụng chúng trong các môn khoa học tự nhiên. Mong rằng độc giả sẽ thấy hứng thú và thú vị khi nghiên cứu về đồ thị parabol và các vấn đề liên quan trong tài liệu này.