Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình logarit có chứa tham số

Tài liệu gồm 25 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán phương trình logarit có chứa tham số, được phát triển dựa trên câu 43 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu phương trình logarit có chứa tham số: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT Ta thường sử dụng các phương pháp sau: + Phương pháp 1. Phương pháp đưa về cùng cơ số. + Phương pháp 2. Phương pháp đặt ẩn phụ. + Phương pháp 3. Phương pháp hàm số. [ads] B. BÀI TẬP MẪU 1. Bài toán Cho phương trình $\log _2^2(2x) – (m + 2){\log _2}x + m – 2 = 0$ ($m$ là tham số thực). Tập hợp tất cả các giá trị của $m$ để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn $[1;2]$ là? 2. Phân tích hướng dẫn giải 1. Dạng toán: Đây là dạng toán tìm điều kiện của tham số để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. 2. Hướng giải: + Bước 1: Viết lại phương trình logarit về dạng phương trình bậc hai đối với 1 biểu thức logarit. + Bước 2: Đặt ẩn phụ là biểu thức logarit và tìm điều kiện cho ẩn phụ. + Bước 3: Tìm điều kiện cho phương trình ẩn phụ. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

32 bài toán phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Giải tích chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số: + Cho phương trình 4 10 2 16 3 0 x x x m với m là tham số thực. Có bao nhiêu số nguyên m để phương trình có hai nghiệm thực phân biệt? + Gọi S là tập hợp nghiệm nguyên của bất phương trình 2 2 2 2 2 log 2 2 log 2 log x mx mx x. Có bao nhiêu giá trị nguyên của tham số m để tập hợp S có đúng 8 phần tử? + Cho hàm số bậc 4 có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m và m 2021 2021 để phương trình 3 2 log f x x f x mx mx f x mx có hai nghiệm phân biệt dương? + Có bao nhiêu giá trị nguyên của tham số a thuộc 20 20 để bất phương trình 2 3 3 3 log log 1 0 x a x a có không quá 20 nghiệm nguyên? + Cho phương trình 3 2020 log 2021 x a x với a là số thực dương. Biết tích các nghiệm của phương trình là 32. Mệnh đề nào sau đây là đúng?
Phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT - BPT mũ và lôgarit
Tài liệu gồm 45 trang, được tổng hợp bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp đánh giá và sử dụng tính đơn điệu của hàm số để giải phương trình và bất phương trình mũ và lôgarit, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT – BPT mũ và lôgarit: + THPT GIA LỘC – HẢI DƯƠNG NĂM 2018 – 2019 LẦN 02: Cho hai số thực a b thỏa mãn 100 40 16 4 log log log12 a b a b. Giá trị của a b bằng? + THPT CHUYÊN BẮC GIANG NĂM 2018 – 2019 LẦN 01: Phương trình 2 3 5 6 2 5 x x x có một nghiệm dạng loga x b b với ab là các số nguyên dương thuộc khoảng 1 7. Khi đó a b 2 bằng? + THPT YÊN ĐỊNH – THANH HÓA 2018 2019 LẦN 2: Cho xy là hai số thực không âm thỏa mãn 2 2 2 1 2 1 log 1 y x x y x. Giá trị nhỏ nhất của biểu thức 2 1 2 4 2 1 x P e x y là? + THPT CHUYÊN THÁI BÌNH NĂM 2018 – 2019 LẦN 04: Cho các số thực x y với x 0 thỏa mãn e e e e 3 1 1 3 1 1 1 3 x y xy xy x y x y y. Gọi m là giá trị nhỏ nhất của biểu thức T x y 2 1. Mệnh đề nào sau đây đúng? + THPT CHUYÊN VĨNH PHÚC LẦN 02 NĂM 2018 – 2019: Biết rằng phương trình e e 2cos x x ax a là tham số có 3 nghiệm thực phân biệt. Hỏi phương trình e e 2cos 4 x x ax có bao nhiêu nghiệm thực phân biệt?
Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số
Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?
Tìm điều kiện của x để bất phương trình mũ - lôgarit đúng với y thỏa mãn điều kiện
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm điều kiện của x để bất phương trình mũ – lôgarit đúng với y thỏa mãn điều kiện cho trước; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng f a f b f a f b f a f b f a f b. Bước 2 : Xét hàm số y f x chứng minh hàm số luôn đồng biến, hoặc luôn nghịch biến Bước 3 : Do tính chất đồng biến hoặc nghịch biến của hàm số f a f b a b nếu hàm số đồng biến f a f b a b nếu hàm số nghịch biến. Cho các số nguyên dương x y không lớn hơn 4022. Biết mỗi giá trị của y luôn có ít nhất 2021 giá trị của x thỏa mãn bất phương trình 2 2 3 3 log 3 3 x y y x y xx y. Hỏi có bao nhiêu giá trị của y? Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y bất phương trình log 11 log 0 3 3 x x y x có nghiệm nguyên x và có không quá 10 số nguyên x thỏa mãn? Cho các số x y a thoả mãn 1 2048 1 x y a và 1 2 2 log 1 2 2 1 x a a x xy x y x a y a. Có bao nhiêu giá trị của a 100 để luôn có 2048 cặp số nguyên x y? Gọi S là tập tất cả các giá trị nguyên của y để bất phương trình 2 3 2 2 2 log 3 3 log 3 log y xy xy y. Có bao nhiêu giá trị nguyên của x để tập hợp S có đúng 9 phần tử?