Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán THCS năm 2022 2023 sở GD ĐT Thanh Hóa

Nội dung Đề học sinh giỏi tỉnh Toán THCS năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Thanh Hóa Đề học sinh giỏi tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn một số câu hỏi từ đề thi: Tìm tất cả các bộ số nguyên (m; p; q) thỏa mãn: 2m.p2 + 1 = q5 trong đó m > 0; p và q là hai số nguyên tố. Cho a, b là hai số nguyên thỏa mãn a khác b và ab(a + b) chia hết cho a2 + ab + b2. Chứng minh rằng |a − b| > 3ab. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường tròn tâm I đường kính BC cắt các cạnh AB và AC lần lượt ở M và N. Các tia BN và CM cắt nhau tại H. Gọi K là giao điểm của IH với MN. Qua I kẻ đường thẳng song song với MN cắt các đường thẳng CM và BN lần lượt ở E và Q. Đề thi còn nhiều câu hỏi khác đòi hỏi sự tư duy và kiến thức sâu rộng của các em học sinh. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện kỹ năng giải quyết vấn đề và nắm vững kiến thức Toán trong chương trình học THCS.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Tân Kỳ - Nghệ An
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 10 năm 2021. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An : + a) Chứng minh rằng với mọi số tự nhiên n thì n3 + 11n chia hết cho 6. b) Giải phương trình c) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 – y2 = 4x + 3. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường thẳng vuông góc với BC tại B cắt AC tại D. a) Chứng minh rằng: AH2 = HB.HC và BH.BC = AD.AC. b) Chứng minh c) Cho góc nhọn a và sin a = 2/3. Tính P. + Cho 7 điểm phân biệt nằm bên trong hình vuông ABCD có cạnh bằng 10. Chứng minh rằng có ít nhất một điểm trong hình vuông đã cho (có thể nằm trên cạnh của hình vuông) sao cho khoảng cách từ nó đến 7 điểm đã cho đều lớn hơn 2,5.
Đề thi HSG Toán 9 cấp thị xã năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
Đề thi HSG Toán 9 cấp thị xã năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG Toán 9 cấp thành phố năm 2021 - 2022 phòng GDĐT TP Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán 9 cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Thanh Hóa; đề thi được biên soạn theo hình thức 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 09 năm 2021.
Đề thi HSG Toán cấp huyện năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán cấp huyện năm học 2021 – 2022 phòng GD&ĐT huyện Kim Thành, tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 05 tháng 10 năm 2021.