Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát cuối năm lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Trãi Hà Nội

Nội dung Đề khảo sát cuối năm lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Trãi Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát cuối năm môn Toán lớp 9 trường THCS Nguyễn Trãi Hà Nội Đề khảo sát cuối năm môn Toán lớp 9 trường THCS Nguyễn Trãi Hà Nội Chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến quý vị đề khảo sát chất lượng cuối năm môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Nguyễn Trãi, quận Thanh Xuân, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 04 tháng 05 năm 2023, đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích dẫn từ Đề khảo sát cuối năm Toán lớp 9 năm 2022 - 2023 trường THCS Nguyễn Trãi Hà Nội: + Đề bài 1: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 60 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10 km/h nên xe ô tô đến B sớm hơn xe máy 12 phút. Tính vận tốc của mỗi xe. + Đề bài 2: Một bóng đèn huỳnh quang có dạng một hình trụ có chiều dài bằng 120cm và bán kính của đường tròn đáy bằng 2cm. Tính thể tích của bóng đèn đó. (Lấy pi ~ 3,14). + Đề bài 3: Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx + 4. a) Chứng minh đường thẳng (d) luôn đi qua điểm A(0;4) với mọi giá trị của m. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt parabol (P): y = x² tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho (x1 + 2×2)(x2 + 2×1) = 14. Hãy cố gắng và làm bài thật tốt, chúc các em đạt kết quả cao trong kỳ thi sắp tới! Cảm ơn quý thầy cô và các em đã tham gia.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.
Tuyển tập 50 đề thi học sinh giỏi Toán 9 cấp huyện quận có lời giải
Tuyển tập 50 đề thi học sinh giỏi Toán 9 cấp tỉnh thành phố có lời giải
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.