Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 12 môn Toán lần 1 năm 2022 2023 trường THPT Quảng Xương 2 Thanh Hóa

Nội dung Đề HSG lớp 12 môn Toán lần 1 năm 2022 2023 trường THPT Quảng Xương 2 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh giỏi môn Toán lớp 12 lần 1 năm học 2022 – 2023 trường THPT Quảng Xương 2, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán lớp 12 lần 1 năm 2022 – 2023 trường THPT Quảng Xương 2 – Thanh Hóa : + Hai chiếc ly đựng chất lỏng giống nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao là 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thư hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1 dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (Độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng – lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01 dm). + Bạn Mai là sinh viên năm cuối chuẩn bị ra trường, nhờ có công việc làm thêm mà Mai có một khoản tiết kiệm nhỏ, Mai muốn gửi tiết kiệm để chuẩn bị mua một chiếc xe máy Honda Lead trị giá 45 triệu đồng để tiện cho công việc. Vì vậy, Mai đã quyết định gửi tiết kiệm theo hình thức lãi kép với lãi suất 0,8%/1 tháng và mỗi tháng Mai đều đặn gửi tiết kiệm một khoản tiền là 3 triệu đồng. Hỏi sau ít nhất bao nhiêu tháng, Mai đủ tiền để mua xe máy? + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại 9 30 3 10 a A AB a AC. Hình chiếu của S trên mặt phẳng (ABC) là điểm H thuộc đoạn thẳng BC. Biết rằng HC HB 2 và 2 2 a SH. Góc giữa mặt phẳng (SAB) và (SAC) bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi cấp huyện Toán 12 năm 2018 - 2019 sở GD và ĐT Cao Bằng
Đề thi chọn học sinh giỏi cấp huyện Toán 12 năm 2018 – 2019 sở GD và ĐT Cao Bằng gồm 1 trang với 6 bài toán tự luận, đề được biên soạn nhằm tuyển chọn các em học sinh giỏi Toán 12 để bồi dưỡng và tạo điều kiện để các em tham gia các kỳ thi HSG Toán ở cấp cao hơn như thi học sinh giỏi cấp tỉnh, cấp quốc gia … đề thi có lời giải chi tiết. Trích dẫn đề thi chọn học sinh giỏi cấp huyện Toán 12 năm 2018 – 2019 sở GD và ĐT Cao Bằng : + Một khách sạn có 50 phòng. Nếu mỗi phòng cho thuê với giá 400 ngàn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá lên 20 ngàn đồng thì có thêm hai phòng bỏ trống không có người thuê. Hỏi giám đốc khách sạn phải chọn giá phòng mới là bao nhiêu để thu nhập của khách sạn trong ngày là lớn nhất? [ads] + Một đội ngũ cán bộ khoa học gồm 8 nhà Toán học nam, 5 nhà Vật lý nữ và 3 nhà Hóa học nữ. Người ta chọn ra từ đó 4 người để đi công tác, tính xác suất sao cho trong 4 người được chọn phải có nữ và có đủ ba bộ môn. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x – y – 2 = 0, phương trình cạnh AC: x + 2y – 5 = 0. Biết trọng tâm của tam giác G(3;2). Xác định tọa độ điểm A và viết phương trình cạnh BC.
Đề thi KSCL đội tuyển HSG Toán 12 năm 2018 - 2019 trường Yên Lạc 2 - Vĩnh Phúc
Đề thi KSCL đội tuyển HSG Toán 12 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 1 trang và 7 bài toán, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi KSCL đội tuyển HSG Toán 12 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Một hộp đựng 9 tấm thẻ được đánh số từ 1 đến 9. Hỏi phải rút ít nhất bao nhiêu thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 phải lớn hơn 5/6. + Cho hàm số y = (2x – 4)/(x + 1) có đồ thị là (C) và hai điểm M (-3;0), N(-1;-1). Tìm trên đồ thị hàm số (C) hai điểm A, B sao cho chúng đối xứng nhau qua đường thẳng MN. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 - 2019 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Thái Nguyên được biên soạn và tổ chức thi ngày 23 tháng 10 năm 2018 nhằm tuyển chọn các em giỏi Toán 12 nhất đang học tập tại các trường THPT tại tỉnh Thái Nguyên, để bồi dưỡng thêm và tạo điều kiện để các em thử sức ở cuộc thi Toán 12 cấp Quốc gia, đề được biên soạn theo hình thức tự luận với 1 trang và 5 bài toán, thí sinh làm bài trong 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Thái Nguyên : + Cho hàm số y = x^3 – 3x^2 + 4 có đồ thị (C), đường thẳng (d) đi qua A(1;2) và có hệ số góc m. Tìm m để (d) cắt (C) tại ba điểm phân biệt A, B, C sao cho BC = 4√2. [ads] + Cho các số thực dương x, y thỏa mãn điều kiện x^2 + 2y^2 = 8/3. Tìm giá trị lớn nhất của biểu thức. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng ABC là điểm H thỏa mãn BI = 3IH và góc giữa hai mặt phẳng(SAB);(SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 - 2019 sở GD và ĐT Quảng Ngãi
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Quảng Ngãi được biên soạn theo hình thức tự luận với 6 bài toán, học sinh làm bài trong thời gian 180 phút, đề nhằm tuyển chọn những em học sinh khối 12 xuất sắc môn Toán để tiếp tục bồi dưỡng, rèn luyện và tạo điều kiện để các em được thử sức ở các cuộc thi cấp cao hơn như kỳ thi học sinh giỏi Toán cấp Quốc gia … đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Quảng Ngãi : + Có hai chiếc hộp chứa bi, mỗi viên bi chỉ mang màu xanh hoặc màu đỏ. Lấy ngẫu nhiên từ mỗi hộp đúng 1 viên bi. Biết tổng số bi trong hai hộp là 20 và xác suất để lấy được 2 viên bi màu xanh là 55/84. Tính xác suất để lấy được 2 viên bi màu đỏ. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD và điểm E thuộc cạnh BC. Đường thẳng qua A và vuông góc với AE cắt CD tại F. Gọi M là trung điểm EF, đường thẳng AM cắt CD tại K. Tìm tọa độ điểm D biết A (-6;6), M (-4;2), K(-3;0) và E có tung độ dương. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Biết AB = 7a, BC = 7√3a, E là điểm trên cạnh SC và EC = 2ES. Tính thể tích khối chóp E.ABC. Tính khoảng cách giữa hai đường thẳng AC và BE.