Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hà Nội

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD ĐT Hà Nội Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD ĐT Hà Nội Ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2020-2021. Đề tuyển sinh này bao gồm 01 trang với 05 bài toán dạng tự luận, học sinh sẽ có thời gian làm bài trong 120 phút (không tính thời gian phát đề). Các đáp án và lời giải chi tiết của đề thi sẽ được cập nhật sớm nhất có thể bởi Sytu. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Hà Nội: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào chiều thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hải Dương : + Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4 cây. Hỏi lúc đầu đội công nhân có bao nhiêu người? + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1 + 2×2 = m + 3. + Cho tam giác ABC có ba góc nhọn và các đường cao AF, BD, CE cắt nhau tại H. 1. Chứng minh rằng: DAH = DEH. 2. Gọi O và M lần lượt là trung điểm của BC và AH. Chứng minh rằng: tứ giác MDOE nội tiếp. 3. Gọi K là giao điểm của AH và DE. Chứng minh rằng: AH2 = 2MK(AF + HF).
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân làm chung một công việc thì làm xong trong 12 ngày. Khi làm riêng, để hoàn thành công việc trên thì đội thứ nhất cần nhiều thời gian hơn đội thứ hai là 10 ngày. Hỏi nếu làm riêng thì trong bao nhiêu ngày mỗi đội sẽ làm xong công việc trên? + Một dụng cụ gồm hai phần: một phần có dạng hình trụ, phần còn lại có dạng hình nón với các kích thước cho như hình vẽ bên. a) Tính chiều cao của phần dụng cụ có dạng hình nón. b) Tính thể tích dụng cụ đã cho (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Lấy điểm H nằm giữa O và B (H khác O và H khác B), vẽ dây cung MN của đường tròn (O) vuông góc với AB tại H. Trên đường thẳng MN lấy điểm C nằm ngoài đường tròn (O) sao cho CM > CN. Đoạn thẳng AC cắt đường tròn (O) tại điểm K (K khác A). Hai dây cung MN và BK cắt nhau tại E. a) Chứng minh tứ giác AHEK là tứ giác nội tiếp. b) Chứng minh CN.CM = CK.CA. c) Từ điểm N vẽ đường thẳng vuông góc với đường thẳng AC, đường thẳng này cắt tia MK tại F. Chứng minh tam giác KFN là tam giác cân.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho phương trình: x2 – 2(m + 1)x + m2 + m = 0 (m là tham số). 1) Tìm các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2. 2) Tìm hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào tham số m. + Bác Tư đến siêu thị mua một cái quạt máy và một ấm đun siêu tốc với tổng số tiền theo giá niêm yết là 630000 đồng. Tuy nhiên, trong tuần lễ tri ân khách hàng nên siêu thị đã giảm giá quạt máy 15% và giảm giả ấm đun siêu tốc 12% so với giá niêm yết của từng sản phẩm. Nên Bác Tư chỉ phải trả 543000 đồng khi mua hai sản phẩm trên. Hỏi giá niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là bao nhiêu? + Cho đường tròn tâm O đường kính AB và một điểm C tùy ý trên (O) (C khác A, B và CA < CB). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại D. Dựng CH vuông góc với BD tại H (H nằm trên BD). Đường thẳng DO cắt CH và CB lần lượt tại M và N. 1) Chứng minh: tứ giác CNHD nội tiếp được trong đường tròn. 2) Chứng minh: CM = CO. 3) Các đường thẳng AB và CD cắt nhau tại E. Chứng minh: EA.EB = EC2. 4) Khi quay tam giác DNB một vòng quanh cạnh DN ta được một hình nón. Biết OB = 6 cm, BD = 8 cm. Tính thể tích của hình nón tạo thành.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai : + Hai vòi nước cùng chảy vào một bể cạn (không có nước) sau 40 phút thì đầy bể. Nếu mở vòi thứ nhất chảy trong 15 phút rồi khóa lại, sau đó mở vòi thứ hai chảy tiếp trong 20 phút thì lúc này lượng nước trong bể chiếm thể tích 5/12 của bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao lâu? + Một hình nón có bán kính đáy r = 6cm, độ dài đường sinh l = 10cm. Tính thể tích của hình nón đó. + Cho tam giác ABC vuông tại A, trên cạnh AB lấy điểm M (M khác A và M khác B). Từ điểm M vẽ đường thẳng MN vuông góc với BC (N thuộc BC), đường thẳng MN cắt đường thẳng AC tại K. 1) Chứng minh tứ giác AMNC nội tiếp. 2) Chứng minh ABK = ACM. 3) Đoạn thẳng BK cắt đường tròn đường kính BM tại điểm D (D khác B). Gọi I là tâm và r là bán kính của đường tròn nội tiếp tam giác BKC. Chứng minh 1/r = 1/KN + 1/CD + 1/AB.