Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019-2020 trường THPT chuyên Hà Nội Amsterdam Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2019-2020 trường THPT chuyên Hà Nội Amsterdam Chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học kì 1 môn Toán lớp 9 năm học 2019-2020 của trường THPT chuyên Hà Nội - Amsterdam. Đề thi bao gồm 05 bài toán tự luận, trong đó có 04 bài toán chung cho tất cả học sinh và một bài toán riêng dành cho lớp chọn. Thời gian làm bài thi là 90 phút. Trích dẫn đề thi Toán lớp 9 HK1 năm học 2019-2020 của trường THPT chuyên Hà Nội - Amsterdam: + Bài 1: Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng (d): y = x + 6 và (dm): y = (m^2 - 3m + 3)x + m^2 + m (với m là tham số). 1. Tìm giá trị của m để đường thẳng (dm) đi qua điểm M(-1;1). 2. Tìm giá trị của m để đường thẳng (dm) song song với đường thẳng (d). Sau đó, tính khoảng cách giữa hai đường thẳng (dm) và (d). + Bài 2: Từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. 1. Chứng minh rằng bốn điểm A, B, O, C cùng thuộc một đường tròn. 2. Gọi H là giao điểm của AD và BC. Chứng minh rằng OH.OA = OE^2. 3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh rằng SF là tiếp tuyến của đường tròn (O). 4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ. Dưới đây là một số nội dung của đề thi HK1 Toán lớp 9 năm 2019-2020 trường THPT chuyên Hà Nội - Amsterdam. Chúc các em học tốt và thành công trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề cuối học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề cuối học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hàm số: y = (1 – 3m)x + 5m (d) (m là tham số). 1) Tìm m để hàm số trên nghịch biến trên R. 2) Tìm m để đường thẳng (d) cắt đường thẳng y = 4x + 7m + 6 (d’) tại một điểm trên trục tung. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Gọi giao điểm của AO và BC là H. Kẻ đường kính BD. a) Chứng minh: 4 điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh 2 4 BD OH OA. c) Từ O kẻ OI ⊥ AD (I ∈ AD). Hai đường thẳng OI và BC cắt nhau tại M. Chứng minh MD là tiếp tuyến của đường tròn (O). + Tìm x để biểu thức A đạt giá trị lớn nhất: A 1 3 26 5 x.
Đề học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm mã đề 901 902 903 904. Trích dẫn Đề học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Bình Lục – Hà Nam : + Cho hàm số bậc nhất y = (2 – m)x + m + 1 (với m là tham số) có đồ thị là đường thẳng (d). a) Tìm giá trị của m để hàm số nghịch biến trên R. b) Tìm m để đường thẳng (d) cắt đường thẳng y = 3x – 2 tại điểm có hoành độ bằng 2. + Cho đường tròn (O; R) đường kính AB và điểm M thuộc đường (O) (MA < MB, M khác A và B). Kẻ MH vuông góc với AB tại H. a) Chứng minh ∆ABM vuông. Giả sử MA = 6 cm, MB = 8cm, hãy tính MH. b) Tiếp tuyến tại A của đường tròn (O) cắt tia BM ở C. Gọi N là trung điểm của AC. Chứng minh đường thẳng NM là tiếp tuyến của đường tròn (O). c) Tiếp tuyến tại B của (O) cắt đường thẳng MN tại D. Chứng minh AN.BD = R2 và OC ⊥ AD. + Cho hai hàm số y = 3x + 2 và y = (m + 2)x – 3 (với m khác -2). Tìm m để đồ thị của hai hàm số trên là hai đường thẳng song song.
Đề học kì 1 Toán 9 năm 2023 - 2024 phòng GDĐT Nghĩa Hưng - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối học kì 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Hưng, tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kì 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Nghĩa Hưng – Nam Định : + Cho hàm số y = 2x – 3. a) Vẽ đồ thị hàm số trên hệ trục toạ độ Oxy. b) Tìm m biết hàm số y = mx + m2 – m – 5 (x là biến số) đồng biến và đồ thị của nó cắt đường thẳng y = 2x – 3 tại điểm có hoành độ bằng 1. + Cho đường tròn (O, R), đường kính BC, lấy điểm A trên đường tròn (O) sao cho AB < AC. Vẽ OM ⊥ AC tại M a) Tính OM nếu biết: R = 5cm; AC = 6cm. b) Tiếp tuyến tại C của đường tròn (O) cắt tia OM tại D. Chứng minh: DC2 = DM . DO. c) Gọi N là giao điểm của BD và đường tròn (O). Chứng minh: NBO + NMO = 1800. + Cho đường tròn (O) có AB và AC là hai tiếp tuyến (B, C là tiếp điểm). Kết luận nào sau đây “sai”? A. ∆ABC cân tại A B. AO là đường phân giác của BAC C. AO đi qua trung điểm của BC D. AB2 = AO2 + OB2.
Đề cuối học kỳ 1 Toán 9 năm 2023 - 2024 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2023 – 2024 phòng GD&ĐT Ứng Hòa – Hà Nội : + Một cái thang dài 3,5m dựa vào tường. Góc nghiêng của cái thang tạo với mặt đất một góc là 660. Tính chiều cao của bức tường? Làm tròn kết quả đến chữ số thập phân thứ hai. + Cho hai hàm số bậc nhất (d1) y = 2x – 3 và (d2) y = –x: 1/ Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ. 2/ Tìm tọa độ giao điểm A của (d1) và (d2) bằng phép tính. 3/ Tìm m để đường thẳng (d1) cắt đồ thị hàm số (d3): y = (m – 1)x – 4 tại một điểm nằm bên phải trục tung. + Từ M nằm ngoài (O; R) sao cho OM > 2R, vẽ hai tiếp tuyến MA, MB (A và B là các tiếp điểm). Gọi H là giao điểm của OM và AB. 1/ Chứng minh OM vuông góc với AB. 2/ Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn. 3/ Vẽ đường kính BD của đường tròn (O). Đường thẳng MD cắt đường tròn (O) tại điểm thứ hai là E (E khác D). Chứng minh ME.MD = MH. MO.