Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM

Nội dung Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM Ngày 13 tháng 07 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian 120 phút cho học sinh làm bài. Dưới đây là một số câu hỏi trong đề tuyển sinh: 1. Cho các phương trình: \(x^2 + ax + 3 = 0\) và \(x^2 + bx + 5 = 0\) với a, b là tham số. a) Chứng minh nếu ab ≥ 16 thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung x₀. Tìm a, b sao cho |a| + |b| có giá trị nhỏ nhất. 2. Cho phương trình: \(3x^2 – y^2 = 23^n\) với n là số tự nhiên. a) Chứng minh nếu n chẵn thì phương trình đã cho không có nghiệm nguyên (x;y). b) Chứng minh nếu n lẻ thì phương trình đã cho có nghiệm nguyên (x;y). 3. Cho số tự nhiên \(a = 3^{13} \cdot 5^7 \cdot 7^{20}\). a) Gọi A là tập hợp các số nguyên dương k sao cho k là ước của a và k chia hết cho 105. Hỏi tập A có bao nhiêu phần tử? b) Giả sử B là một tập con bất kỳ của A có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của B sao cho tích của chúng là số chính phương.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Hồng Hà - Hà Nội
Thứ Tư ngày 03 tháng 04 năm 2019, trường THPT Hồng Hà – Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2019 – 2019 môn Toán dành cho học sinh lớp 9 trên địa bàn thủ đô Hà Nội, đề được biên soạn dựa trên cấu trúc chung của các đề thi Toán tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội trong những năm gần đây. Đề thi thử Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Hồng Hà – Hà Nội có mã đề 006 được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Hồng Hà – Hà Nội : + Cho hai đường thẳng d1: y = 1/3.x + m + 1/3 và d2: y = -2x – 6m + 5. a) Chứng minh d1 và d2 luôn cắt nhau tại một điểm M, tìm tọa độ của điểm M. b) Tìm m để giao điểm M của d1 và d2 nằm trên parabol (P): y = 9x^2. [ads] + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình. Tháng 2 năm 2019, hai tổ của một phân xưởng may sản xuất được 800 bộ quần áo, sang tháng 3 năm 2019 tổ một vượt mức 20%, tổ hai vì thiếu người nên giảm mức 15% do đó cuối tháng 3 cả hai tổ sản xuất được 785 bộ quần áo. Tính xem trong tháng hai mỗi tổ sản xuất được bao nhiêu bộ quần áo. + Cho đường tròn (O) và dây AB. Vẽ đường kính CD vuông góc với AB tại K (D thuộc cung nhỏ AB). Lấy điểm M thuộc cung nhỏ BC sao cho cung MC nhỏ hơn cung MB. Dây DM cắt AB tại F. Tia CM cắt đường thẳng AB tại E. a) Chứng minh tứ giác DKME nội tiếp. b) Chứng minh KE.KF = KC.KD. c) Tiếp tuyến tại M của (O) cắt AB tại I. Chứng minh tam giác IMF cân, từ đó suy ra IE = IF. d) Chứng minh FB/EB = KA/EK.
Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long - Hà Nội
Nhằm giúp học sinh ôn tập, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020, ngày 24 tháng 02 năm 2019 vừa qua, trường THPT Thăng Long, Hà Nội đã tiến hành tổ chức kỳ thi thử môn Toán dành cho các em học sinh khối lớp 9. Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội gồm 1 trang, đề được biên soạn dựa vào cấu trúc đề Toán tuyển sinh vào lớp 10 THPT năm học 2018 – 2019 của sở GD&ĐT Hà Nội với 5 bài toán tự luận, học sinh làm bài trong 120 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Cho một hình chữ nhật biết khi tăng độ dài của chiều rộng lên 1 cm và chiều dài lên 4 cm thì diện tích hình chữ nhật sẽ tăng thêm 26 cm2 và khi tăng chiều rộng thêm 3 cm đồng thời giảm chiều dài đi 4 cm thì được hình vuông. Tính chiều dài và chiều rộng của hình chữ nhật đã cho. + Cho điểm A thuộc đường thẳng d và đường thẳng d, vuông góc với d tại A. Trên d, lấy điểm O và vẽ đường tròn tâm O bán kính R sao cho R < OA. Cho M là một điểm bất kỳ trên đường thẳng d, vẽ tiếp tuyến MB với đường tròn (O) (B là tiếp điểm). Vẽ dây BC của đường tròn (O) sao cho BC vuông góc với OM và cắt OM tại N. 1) Chứng minh MC là tiếp tuyến của đường tròn (O). 2) Chứng minh năm điểm A, B, C, O, M thuộc cùng một đường tròn. 3) Chứng minh BC.OM = 2BO.BM. Xác định vị trí của điểm M trên đường thẳng d sao cho diện tích từ giác OBMC đạt giá trị nhỏ nhất. 4) Chứng minh rằng khi M di chuyển trên đường thẳng d thì điểm N luôn thuộc một đường cố định.
Bộ đề thi thử vào lớp 10 môn Toán năm 2018 trường Chu Văn An - Sơn La
Bộ đề thi thử vào lớp 10 môn Toán năm 2018 trường TH, THCS & THPT Chu Văn An – Đại học Tây Bắc – Sơn La gồm 12 trang với 12 đề thi, các đề được biên soạn theo hình thức tự luận, bộ đề nhằm giúp các em học sinh lớp 9 ôn tập và rèn luyện môn Toán để chuẩn bị cho kỳ thi vào lớp 10.
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội được biên soạn nhằm giúp các em học sinh lớp 9 đang học tập tại các trường THCS trên địa bàn quận Hai Bà Trưng, Hà Nội nắm được dạng đề và rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT trong thời gian sắp tới, đề thi có lời giải chi tiết .