Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán 12 năm học 2020 - 2021 sở GDĐT Quảng Bình

Thứ Hai ngày 21 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ kiểm tra chọn đội tuyển chính thức dự thi học sinh giỏi môn Toán cấp Quốc gia lớp 12 THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Trên các cạnh AB, AC của tam giác ABC lần lượt lấy hai điểm A, B. Hai đoạn thẳng BB1 và CC1 cắt nhau tại X và hai đoạn thẳng B1C1 và AX cắt nhau tại P. Đường tròn ngoại tiếp các tam giác BXC1, CXB1 cắt nhau tại điểm thứ hai Y và cắt cạnh BC lần lượt tại D và E. a) Giả sử B1C1 // BC và gọi H, K lần lượt là hình chiếu vuông góc của Y lên AB và AC. Chứng minh rằng: YH/AB = YK/AC. b) Giả sử B1E và C1D cắt nhau tại Q và đường thẳng B1D cắt đường thẳng C1E tại R. Chứng minh ba điểm P, Q và R thẳng hàng. + Cho tập hợp X có 2020 phần tử. Bạn An chia tập X thành 2 tập hợp A và B thỏa mãn |A| = |B|; A ∩ B = Ø, bằng k cách khác nhau. Tìm giá trị nhỏ nhất của k sao cho với 2 phần tử bất kỳ của X, luôn có ít nhất 1 cách trong k cách chia mà bạn An chia chúng vào 2 tập hợp khác nhau. + Gọi n là số nguyên dương thỏa mãn điều kiện 2n – 5 | 3(n! + 1). a) Giả sử tồn tại n > 4 thỏa mãn điều kiện trên. Chứng minh rằng 2n  – 5 là số nguyên tố. b) Tìm tất cả các số nguyên dương n thỏa mãn điều kiện trên.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi thành phố Toán THPT năm 2022 - 2023 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi thành phố môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi gồm 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Năm ngày 08 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi thành phố Toán THPT năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4a. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho ABM = MBI và MN vuông góc BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. a) Tính thể tích của khối chóp S.AMCB theo a. b) Tính khoảng cách từ điểm N đến mặt phẳng (SBC) theo a. + Trong mặt phẳng tọa độ (Oxy), cho hình thang ABCD có góc BAD = ADC = 90°, D(2;2) và CD = 2AB. Gọi H là hình chiếu vuông góc của điểm D trên đường thẳng AC. Điểm M là trung điểm của đoạn HC. Tìm tọa độ các điểm A, B và C biết rằng đỉnh B thuộc đường thẳng d có phương trình x − 2y + 4 = 0. + Cho ba số thực dương x, y, z thỏa mãn 5(x2 + y2 + z2) = 9(xy + 2yz + zx). Tìm giá trị lớn nhất của biểu thức P.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Khánh Hòa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Cho hàm số y = x4 – 2(m + 1)x2 + 2m + 1 có đồ thị (C). a) Với m = 1, tính diện tích của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị (C). b) Tìm tất cả các giá trị dương của tham số m để đồ thị (Cm) cắt trục hoành tại bốn điểm phân biệt và tiếp tuyến của (Cm) tại giao điểm có hoành độ lớn nhất hợp với hai trục tọa độ một tam giác có diện tích bằng 24. + Bạn An chọn ngẫu nhiên 3 quả cầu từ hộp gồm 19 quả cầu được đánh số thứ tự từ 1 đến 19. Hỏi có bao nhiêu cách chọn sao cho các số thứ tự ghi trên 3 quả cầu có tổng chia hết cho 4. + Biết rằng với mỗi n thuộc N*, luôn tồn tại duy nhất hai số nguyên dương an, bn sao cho. Chứng minh là số chính phương.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho hàm số 1 2 2 2024 2023 2022 1 2024 2023 2022 m m y x x x (m là tham số thực). Biện luận theo m số điểm cực trị của hàm số đã cho. + b. Cho phương trình 2 m x x x 2 2 2. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. SA vuông góc với mặt phẳng (ABCD). AB BC a AD a 2 SA a 3. a. Tính thể tích khối chóp S.ABCD. b. Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD). c. Gọi M là điểm nằm trên cạnh SA sao cho SM x = (0 3 x a). Mặt phẳng (BCM ) chia hình chóp thành hai phần có thể tích là V1 và V2 (trong đó V1 là thể tích của phần chứa đỉnh S). Tìm x để V V 2 1 2.