Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Long An

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Long An Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Long An Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Long An Ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Long An đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 – 2021. Đề tuyển sinh này bao gồm 6 bài toán dạng tự luận, được thực hiện trong thời gian 120 phút. Đề thi đi kèm với đáp án và lời giải chi tiết. Một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 của sở GD&ĐT Long An: + Trong mặt phẳng tọa độ Oxy, hai đường thẳng (d1): y = x – 3 và (d2): y = -3x + 1. Hãy vẽ đường thẳng (d1), tìm tọa độ giao điểm của (d1) và (d2), và viết phương trình đường thẳng (d) song song với (d1) và cắt trục tung tại điểm có tung độ bằng 7. + Cho tam giác ABC vuông tại A, có đường cao AH với AH = 4,8cm và AC = 8cm. Hãy tính độ dài đoạn thẳng CH và BC. + Đường bay lên của một máy bay tạo với phương nằm ngang một góc 20 độ. Để đạt độ cao 5000m, máy bay cần bay được quãng đường bao nhiêu? (kết quả làm tròn đến đơn vị mét).

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 2 năm 2023 - 2024 trường THCS Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 trường THCS Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2023 – 2024 trường THCS Anh Sơn – Nghệ An : + Giải bài toán bằng cách lập phương trình hoặc lập hệ phương trình: Để chào mừng kỷ niệm 200 năm danh xưng Anh Sơn (1882 – 2022) và 60 năm ngày tách lập huyện (19/4/1963 – 19/4/2023), Ban tổ chức đã tuyển chọn 350 em học sinh gồm cả nam và nữ để tham gia màn đồng diễn. Tuy nhiên sau khi cân đối đội hình thì ban tổ chức quyết định tuyển chọn thêm 52 học sinh nữa nên số học sinh nam tăng 20%, số học sinh nữ tăng 10% so với lúc đầu. Hỏi lúc đầu có bao nhiêu học sinh nam bao nhiêu học sinh nữ được tuyển chọn? + Bác An muốn làm 1 thùng đựng lúa có nắp đậy bằng tôn dạng hình trụ có kích thước như trên hình vẽ. Biết mỗi mét vuông tôn có giá là 200 000 đồng. Hỏi bác An cần trả số tiền bao nhiêu để mua tôn? (Biết sự hao hụt tôn ở các mối nối là không đáng kể). + Cho tam giác ABC nhọn, AB < AC. Đường tròn tâm O đường kính BC cắt các cạnh AB, AC theo thứ tự tại F và E. BE và CF cắt nhau tại H. a) Chứng minh tứ giác AEHF nội tiếp. b) Tia AH cắt EF và BC theo thứ tự tại I và K. Chứng minh AL.HK = FI.EK. c) Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Chứng minh ba điểm M, H, N thẳng hàng.
Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 trường THCS Nghi Phong - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 trường THCS Nghi Phong, huyện Nghi Lộc, tỉnh Nghệ An; đề thi gồm 01 trang, hình thức tự luận với 05 bài toán, thời gian 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 trường THCS Nghi Phong – Nghệ An : + Gọi x1, x2 là hai nghiệm của phương trình: x2 – 8x + 15 = 0. Không giải phương trình, hãy tính giá trị biểu thức sau : P 1 2 1 2 1 1 x x. + Để kỷ niệm 131 năm ngày sinh nhật Bác, một đội công nhân được giao nhiệm vụ trồng 360 cây xanh ở khu đồi Đền Chung Sơn. Đến khi làm việc có 4 công nhân được điều đi làm việc khác nên mỗi công nhân phải trồng thêm 3 cây nữa mới hết số cây phải trồng. Tính số công nhân của đội đó? + Cho đường tròn tâm O. Từ điểm M nằm ngoài (O) kẻ 2 tiếp tuyến MC, MD và cát tuyến MAB với đường tròn (A, B, C, D thuộc đường tròn và dây AB không đi qua O; A nằm giữa M và B). Gọi I là trung điểm của AB, H là giao điểm của MO và CD. a) Chứng minh 5 điểm M, O, I, C, D cùng nằm trên một đường tròn; b) Gọi E là giao điểm của 2 đường thẳng CD và OI, S là giao điểm của MI và EH, K là giao điểm của 2 đường thẳng OS và ME. Chứng minh: MH.MO + EI.EO = ME2. c) Kẻ dây BN song song với CD. Chứng minh ba điểm : A, H, N thẳng hàng.
Đề thi thử Toán vào lớp 10 năm 2023 trường THCS thị trấn Văn Điển - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THCS thị trấn Văn Điển, huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 06 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 trường THCS thị trấn Văn Điển – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hàng ngày, bạn An đi học từ nhà đến trường bằng xe đạp. Biết rằng khoảng cách từ nhà bạn An đến trường là 4km. Do lúc về phải lên dốc nên vận tốc đạp xe chậm hơn vận tốc lúc đi 4km/h, vì vậy thời gian lúc về lâu hơn thời gian lúc đi là 5 phút. Hỏi vận tốc đạp xe lúc về của bạn An bằng bao nhiêu km/h? + Người ta thiết kế một thùng tôn hình trụ không có nắp để đựng nước có dung tích bằng 2m3. Biết chiều cao thùng tôn là 2m. Hỏi phải dùng tối thiểu bao nhiêu m2 tôn (không kể mép nối) để làm được thùng tôn trên? Lấy pi = 3,14 và kết quả làm tròn đến hai chữ số thập phân. + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc với AM tại E, gọi H là trực tâm của tam giác ABC. 1) Chứng minh rằng tứ giác ADEC nội tiếp được một đường tròn. 2) Chứng minh rằng ABH = DEA và DE.BC = DC.BM. 3) Kéo dài DE cắt BM tại F, BH cắt AC ở K. Chúng minh rằng DF luôn đi qua một điểm cố định và KF // AM.
Đề thi thử Toán vào lớp 10 lần 2 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm mã đề A; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Cho ba điểm ABC phân biệt, cố định và thẳng hàng sao cho B nằm giữa A và C. Vẽ nửa đường tròn tâm O đường kính BC. Từ A kẻ tiếp tuyến AM đến nửa đường tròn (O) (M là tiếp điểm). Trên cung MC lấy điểm E, đường thẳng AE cắt nửa đường tròn (O) tại điểm thứ hai là F (F không trùng E). Gọi I là trung điểm của đoạn thẳng EF và H là hình chiếu vuông góc của M lên đường thẳng BC. Chứng minh: 1. Tứ giác AMIO nội tiếp. 2. Hai tam giác OFH và OAF đồng dạng với nhau. 3. Trọng tâm G của tam giác OEF luôn nằm trên một đường tròn cố định khi điểm E thay đổi trên cung MC. + Cho phương trình: 2 2 x m xm m 3 0 (với m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt 1 2 x x thỏa mãn 2 2 2 2 1 1 1 4 3 0. + Trên mặt phẳng tọa độ Oxy, cho hai đường thẳng 2 1 2 dy m x m và 2 d y m xm (m là tham số). Tìm m để 1 d song song với 2 d.