Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Bình Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC nội tiếp đường tròn (O) và một điểm P bất kì nằm trong tam giác (P khác O). Đường thẳng AP cắt đường tròn (O)tại điểm thứ hai là D, dựng các đường kính DE, AF của đường tròn (O). Gọi G, I lần lượt là các giao điểm thứ hai của đường thẳng EP, FP với đường tròn (O), K là giao điểm của AI và DG. Gọi H là hình chiếu vuông góc của K trên OP, đường thẳng OP cắt EF tại M. 1. Chứng minh HO là phân giác của góc IHD. 2. Chứng minh KD vuông góc DM. + Cho tam giác ABC có các đường phân giác trong AD, BE, CF cắt nhau tại I. Chứng minh rằng? + Cho đa giác đều có 2n đỉnh (n thuộc N và n ≥ 3). Có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100 độ.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển HSG tỉnh Toán 9 năm 2024 - 2025 phòng GDĐT Vinh - Nghệ An
Đề chọn học sinh giỏi Toán 9 vòng 2 năm 2024 - 2025 phòng GDĐT TP Hải Dương
Đề học sinh giỏi Toán 9 vòng 2 năm 2024 - 2025 phòng GDĐT Yên Thành - Nghệ An
Đề chọn học sinh giỏi Toán 9 năm 2024 - 2025 phòng GDĐT Hoài Đức - Hà Nội