Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Đồng Khởi - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đồng Khởi, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Đồng Khởi – TP HCM : + Cho parabol (P): y = 1 2 x 2 và đường thẳng (d): y = −x + 4 a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. ĐS: (2; 2) và (−4; 8) c) Tìm tọa độ điểm N thuộc (P) (N khác gốc tọa độ) có tung độ gấp ba lần hoành độ. ĐS: N (6; 18). + Để tặng thưởng cho các học sinh đạt thành tích cao trong kì thi học sinh giỏi cấp thành phố. Trường THCS Đồng Khởi đã trao 32 phần thưởng cho các học sinh với tổng giải thưởng là 31300000 đồng, bao gồm mỗi học sinh đạt nhất được thưởng 1500000 đồng; mỗi học sinh đạt giải nhì được thưởng 1000000 đồng; mỗi học sinh đạt giải ba được thưởng 700000 đồng; mỗi học sinh đạt giải khuyến khích được thưởng 300000 đồng (học sinh đạt giải khuyến khích là những em chỉ chỉ đạt học sinh giỏi vòng 2 cấp quận nhưng không đạt học sinh giỏi cấp thành phố). Biết rằng có 8 giải ba và 4 giải khuyến khích được trao. Hỏi có bao nhiêu giải nhất và giải nhì được trao? + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Ba đường cao AK, BM, CN cắt nhau tại H. a) Chứng minh các tứ giác AMHN và BCMN nội tiếp. b) Kẻ đường kính AD của đường tròn (O). AD cắt MN tại I. Chứng minh AB · AC = AD · AK và AD ⊥ MN. c) Tia MN cắt BC tại E; AD cắt BC tại F. Chứng minh AI · AF + KE · KF = AK2.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Lê Hồng Phong - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Lê Hồng Phong, quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 03 năm 2023. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Lê Hồng Phong – Hà Nội : + Cho hàm số: y = x2 có đồ thị là (P) và đường thẳng (d): y = x + 2. a) Vẽ đồ thị parabol (P) và (d) trên cùng một mặt phẳng tọa độ Oxy. b) Tìm tọa độ giao điểm của (d) và (P). + Giải bài toán bằng cách lập hệ phương trình: Hai tổ sản xuất cùng làm chung một công việc thì sau 12 giờ xong. Nếu tổ một làm một mình trong 2 giờ, tổ hai làm một mình trong 7 giờ thì cả hai tổ làm xong một nửa công việc. Hỏi mỗi tổ làm một mình trong bao lâu thì xong công việc đó? + Cho đường thẳng d và đường tròn (O;R) không có điểm chung. Kẻ OH vuông góc d tại H. Điểm A thuộc d và không trùng với điểm H. Qua A kẻ hai tiếp tuyến AB, AC tới (O) (B và C là các tiếp điểm). BC cắt OA, OH lần lượt tại M và N. Đoạn thẳng OA cắt (O) tại I. Chứng minh rằng: a) Tứ giác OBAC nội tiếp. b) OM.OA = ON.OH. c) Xác định tâm đường tròn nội tiếp tam giác ABC. d) Xác định vị trí của điểm A trên đường thẳng d để diện tích tam giác OMN có giá trị lớn nhất.
Đề giữa kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Mỹ Hòa - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Mỹ Hòa, huyện Đại Lộc, tỉnh Quảng Nam; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Mỹ Hòa – Quảng Nam : + Cho hệ phương trình 2 6 1 3 5 x y x y. Khẳng định nào sau đây là đúng? A. Hệ phương trình có hai nghiệm B. Hệ phương trình có vô số nghiệm C. Hệ phương trình có nghiệm duy nhất D. Hệ phương trình vô nghiệm. + (Giải bài toán bằng cách lập hệ phương trình) Hai lớp 9/1 và 9/2 có tổng số 80 bạn. Trong đợt quyên góp sách, vở ủng hộ các bạn vùng bị thiên tai, bình quân mỗi bạn lớp 9/1 ủng hộ 2 quyển; mỗi bạn 9/2 ủng hộ 3 quyển. Vì vậy cả hai lớp ủng hộ 198 quyển sách, vở. Tính số học sinh của mỗi lớp. + Từ một điểm M nằm bên ngoài đường tròn(O) kẻ hai tiếp tuyến MA, MB (A, B là hai tiếp điểm) và cát tuyến MCD với đường tròn (O). Gọi H là giao điểm của MO và AB. Chứng minh rằng: a) Tứ giác MAOB nội tiếp. b) MA2 = MC.MD. c) MHC ODC.
Đề giữa học kỳ 2 Toán 9 năm 2022 - 2023 phòng GDĐT Nông Cống - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa; đề thi hình thức 30% trắc nghiệm khách quan + 70% tự luận, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Nông Cống – Thanh Hóa : + Cho hình vẽ bên. Các góc nội tiếp cùng chắn cung nhỏ AB là: A. Góc ADB và góc AIB. B. Góc ACB và góc AIB. C. Góc ACB và góc BAC. D. Góc ADB và góc ACB. + Cho Parabol (P) 2 y x và đường thẳng (D): y = 4x + 2m. a) Với giá trị nào của m thì (D) tiếp xúc với (P). b) Với giá trị nào của m thì (D) cắt (P) tại hai điểm phân biệt A và B. Tìm toạ độ giao điểm khi 3 m 2. + Cho đường tròn (O;R); AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O;R) cắt các đường thẳng AC, AD thứ tự tại E và F. a) Chứng minh tứ giác ACBD là hình chữ nhật. b) Chứng minh ∆ACD ~ ∆CBE c) Gọi S, S1, S2 thứ tự là diện tích của ∆AEF, ∆BCE và ∆BDF. Chứng minh: SS S 1 2.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Hồng Bàng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đánh giá chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Hồng Bàng, quận 5, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2023. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Hồng Bàng – TP HCM : + Cho hàm số: y = x2/4 (P) và hàm số y = x/2 + 2 (D) a) Vẽ đồ thị (P) và (D) trên cùng mặt phẳng tọa độ Oxy. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán. + Giải bài toán cổ sau bằng cách lập hệ phương trình: Quýt, cam mười bảy quả tươi. Đem chia cho một trăm người cùng vui. Chia ba mỗi quả quýt rồi. Còn cam mỗi quả chia mười vừa xinh. Trăm người, trăm miếng ngọt lành. Quýt, cam mỗi loại tính rành là bao? + Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn. Vẽ các tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). a) Chứng minh: OA vuông góc với BC và tứ giác ABOC nội tiếp. b) Gọi H là giao điểm của BC và OA. Kẻ cát tuyến AEF không đi qua tâm O (E, F thuộc đường tròn tâm O; E nằm giữa A, F và tia AE nằm giữa hai tia AO, AC). Chứng minh tam giác AEH đồng dạng tam giác AOF, suy ra tứ giác EFOH là tứ giác nội tiếp. c) Tia AO cắt đường tròn (O) tại T (T nằm giữa A và O). Các tia BT, CT lần lượt cắt các cạnh AC, AB tại K và I. Chứng minh.